8
The integral of arcsin(x) dx is x arcsin(x) + (1-x2)1/2 + C.
I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
∫ cot(x) dx is written as: ∫ cos(x) / sin(x) dx Let u = sin(x). Then, du = cos(x) dx, giving us: ∫ 1/u du So the integral of 1/u is ln|u|. So the answer is ln|sin(x)| + c
The integral of f'(x) = 1 is f(x) = x + c
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
Evaluate the integral? Use integration by parts. uv - int v du u = e^x du = e^x dv = sinx v = -cosx int e^x sinx dx -e^x cosX - int -cosx e^x -e^x cosx + sinx e^x + C ----------------------------------
8
Int( sin(x) / ( 1+cos(x) ) ) = Int (-du/u) Perform a u-substitution, u=1+cosx du=d/dx(1+cosx)=-sinx =-ln |u| + C negative pulls out of integral (Don't forget the constant) =ln|1+cosx|+C
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
Take the derivative term by term. d/dx(X - cosX) = sin(X) ======
cos(xx)?d/dx(cosu)=-sin(u)*d/dx(u)d/dx(cos(xx))=-sin(xx)*d/dx(xx)-The derivative of xx is:y=xx ;You have to use implicit derivation because there is no formula for taking the derivative of uu.lny=lnxxlny=xlnx-The derivative of lnx is:d/dx(lnu)=(1/u)*d/dx(u)-d/dx(uv)= u*dv/dx+v*du/dxTherefore:(1/y)*dy/dx=x*[(1/x)*d/dx(x)]+lnx(d/dx(x))-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1(1/y)*dy/dx=x*[(1/x)*(1)]+lnx(1)(1/y)*dy/dx=x*[(1/x)]+lnx(1/y)*dy/dx=(x/x)+lnx(1/y)*dy/dx=1+lnxdy/dx=y(1+lnx) ;Multiply y to both sidesdy/dx=xx(1+lnx) ;y=xx, so replace the y with xxd/dx(cos(xx))=-sin(xx)*[xx*(1+lnx)]d/dx(cos(xx))=-(1+lnx)*xx*sin(xx)(cosx)x?Again with the implicit derivation:y=(cosx)xlny=x*ln(cosx)(1/y)*dy/dx=x[d/dx(lncosx)]+lncosx(d/dx(x))(1/y)*dy/dx=x[(1/cosx)*(-sinx)(1)]+lncosx(1) ;The derivative of lncosx is (1/cosx)*d/dx(cosx). The derivative of cosx is (-sinx)*d/dx (x). The derivative of x is 1.(1/y)*dy/dx=x[(1/cosx)*(-sinx)]+lncosx(1/y)*dy/dx=x[-tanx]+lncosx(1/y)*dy/dx=-xtanx+lncosxdy/dx=y(-xtanx+lncosx) ;Multiply both sides by ydy/dx=(cosx)x(-xtanx+lncosx) ;y=(cosx)x, replace all y's with (cosx)xdy/dx=(cosx)x(-xtanx+lncosx)=(cosx)x-1(cosx*lncosx-xsinx)
d/dx sinx = cosx
d/dx cosx=-sin x
integral (a^x) dx = (a^x) / ln(a)
d/dx(-cosx)=--sinx=sinx
d/dx (-cscx-sinx)=cscxcotx-cosx