I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
The integral of tan(x) dx = ln | sec(x) | + cto solve... tan(x) = sin(x)/cos(x)the integral of (sin(x)/cos(x) dx) ... let u = cos(x) then du = -sin(x) dx= the integral of (1/u -du)= -ln | u | + c= -ln | cos(x) | + c= ln | (cos(x))^-1 | + c ... or ... ln | 1/cos(x) | + c= ln | sec(x) | + c
∫ 1/cos(x) dx = ln(sec(x) + tan(x)) + C C is the constant of integration.
sec x = 1/cos x sec x cos x = [1/cos x] [cos x] = 1
Will try integration by parts. uv - int[v du] u = sec(x)----------------du = sec(x) tan(x) dv = tan(x)---------------v = ln[sec(x)] sec(x) ln[sex(x)] - int[lnsec(x) dx] = sec(x) ln[sec(x)] - xlnsec(x) - x + C ===========================
integral of radical sinx
integral of (tanx)^4 (tanx)^4 = (tanx)^2 (tanx)^2 =(sec^2 x - 1)(tan^2 x) =(sec^2 x)(tan^2 x) - tan^2 x = integral of sec^2 x tan^2 x dx - integral of tan^2 x dx First, integral of sec^2 x tan^2 x dx Let u = tanx because that would make du = sec^2 x dx so then we have integral of u^2 du which is (1/3)u^3 substituting back in tanx we get (1/3)tan^3 x Next, integral of tan^2 x tan^2 x = sec^2 x -1 integral of sec^2 x - 1 = integral of sec^2 x dx - integral 1 dx = tanx - x so putting it all together we have integral of tan^4 x dx = (1/3)tan^3 x - tanx + x + C
ln |sec x + tan x| + C
I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
Note that for sec²(x) - tan²(x) = 1, we have: -tan²(x) = 1 - sec²(x) tan²(x) = sec²(x) - 1 Rewrite the expression as: ∫ (sec²(x) - 1) dx = ∫ sec²(x) dx - ∫ 1 dx Finally, integrate each expression to get: tan(x) - x + K where K is the arbitrary constant
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
The integral of tan(x) dx = ln | sec(x) | + cto solve... tan(x) = sin(x)/cos(x)the integral of (sin(x)/cos(x) dx) ... let u = cos(x) then du = -sin(x) dx= the integral of (1/u -du)= -ln | u | + c= -ln | cos(x) | + c= ln | (cos(x))^-1 | + c ... or ... ln | 1/cos(x) | + c= ln | sec(x) | + c
∫ sin(x)/cos2(x) dx = sec(x) + C C is the constant of integration.
∫ 1/cos(x) dx = ln(sec(x) + tan(x)) + C C is the constant of integration.
tan(x) + C d/dx tan(x) = d/dx (sin(x))/(cos(x)) = (sin^2(x)+cos^2(x))/(cos^2(x)) = 1/(cos^2(x)) = sec^2(x) NEVER FORGET THE CONSTANT!
Integral of 1 is x Integral of tan(2x) = Integral of [sin(2x)/cos(2x)] =-ln (cos(2x)) /2 Integral of tan^2 (2x) = Integral of sec^2(2x)-1 = tan(2x)/2 - x Combining all, Integral of 1 plus tan(2x) plus tan squared 2x is x-ln(cos(2x))/2 +tan(2x)/2 - x + C = -ln (cos(2x))/2 + tan(2x)/2 + C
integral (a^x) dx = (a^x) / ln(a)