Sin(x) has a maximum value of +1
and a minimum value of -1.
lim(x->0) of sin(x)^2/x we use L'Hospital's Rule and derive the top and the bottomd/dx(sin(x)^2/x)=2*sin(x)*cos(x)/1lim(x->0) of 2*sin(x)*cos(x)=2*0*1=0
The limit is 2. (Take the deriviative of both the top and bottom [L'Hôpital's rule] and plug zero in.)
You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
The limit as x approaches zero of sin(x) over x can be determined using the squeeze theorem.For 0 < x < pi/2, sin(x) < x < tan(x)Divide by sin(x), and you get 1 < x/sin(x) < tan(x)/sin(x)That is the same as 1 < x/sin(x) < 1/cos(x)But the limit as x approaches zero of 1/cos(x) is 1,so 1 < x/sin(x) < 1which means that the limit as x approaches zero of x over sin(x) is 1, and that also means the inverse; the limit as x approaches zero of sin(x) over x is 1.You can also solve this using deriviatives...The deriviative d/dxx is 1, at all points. The deriviative d/dxsin(x) at x=0 is also 1.This means you have the division of two functions, sin(x) and x, at a point where their slope is the same, so the limit reduces to 1 over 1, which is 1.
The sequence sqrt(x)*sin(x) does not converge.
If the upper limit is a function of x and the lower limit is a constant, you can differentiate an integral using the Fudamental Theorem of Calculus. For example you can integrate Integral of [1,x^2] sin(t) dt as: sin(x^2) d/dx (x^2) = sin(x^2) (2x) = 2x sin(x^2) The lower limit of integration is 1 ( a constant). The upper limit of integration is a function of x, here x^2. The function being integrated is sin(t)
You can use the L'hopital's rule to calculate the limit of e5x -1 divided by sin x as x approaches 0.
tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).
There is no limit. As x approaches 0, sin 1/x oscillates between -1 and 1 infinitely many times. This is considered a form of divergence.
Because the slope of the curve of sin(x) is cos(x). Or, equivalently, the limit of sin(x) over x tends to cos(x) as x tends to zero.
lim(x->0) of sin(x)^2/x we use L'Hospital's Rule and derive the top and the bottomd/dx(sin(x)^2/x)=2*sin(x)*cos(x)/1lim(x->0) of 2*sin(x)*cos(x)=2*0*1=0
lim(h→0) (sin x cos h + cos x sin h - sin x)/h As h tends to 0, both the numerator and the denominator have limit zero. Thus, the quotient is indeterminate at 0 and of the form 0/0. Therefore, we apply l'Hopital's Rule and the limit equals: lim(h→0) (sin x cos h + cos x sin h - sin x)/h = lim(h→0) (sin x cos h + cos x sin h - sin x)'/h' = lim(h→0) [[(cos x)(cos h) + (sin x)(-sin h)] + [(-sin x)(sin h) + (cos x)(cos h)] - cos x]]/0 = cosx/0 = ∞
The limit is 2. (Take the deriviative of both the top and bottom [L'Hôpital's rule] and plug zero in.)
1
As X approaches infinity it approaches close as you like to 0. so, sin(-1/2)