answersLogoWhite

0


Best Answer

Need the fundamental identities here.

tan(X) = sin(X)/cos(X)

sec(X) = 1/cos(X)

so

tan(X)/sec(X)

same as,

sin(X)/cos(X) * cos(X)/1

cancel the cos(X)

= sin(X)

---------------simplest form

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the simplest form for tanx divided by secx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Integration by parts of x tanx?

XtanX dx formula uv - int v du u = x du = dx dv = tanX dx v = ln(secX) x ln(secX) - int ln(secx) dx = X ln(secx) - x ln(secx) - x + C -----------------------------------------


How do you simplify cosx plus sinx tanx?

to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))


What is the derivative of secxtanx?

d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)


What is the derivative of 5secx?

You can take out any constant from a derivative. In other words, this is the same as 5 times the derivative of sec x.


What is integration of secx tanx?

Will try integration by parts. uv - int[v du] u = sec(x)----------------du = sec(x) tan(x) dv = tan(x)---------------v = ln[sec(x)] sec(x) ln[sex(x)] - int[lnsec(x) dx] = sec(x) ln[sec(x)] - xlnsec(x) - x + C ===========================

Related questions

Intergrate sec x?

Sec x dx = sec x (secx + tanx)/ (secx + tanx) dx . therefore the answer is ln |secx + tanx|


What is the integral of tan cubed x secx dx?

This is a trigonometric integration using trig identities. S tanX^3 secX dX S tanX^2 secX tanX dX S (secX^2 -1) secX tanX dX u = secX du = secX tanX S ( u^2 - 1) du 1/3secX^3 - secX + C


How do you Prove sin x times sec x equals tan x?

sinx*secx ( secx= 1/cos ) sinx*(1/cosx) sinx/cosx=tanx tanx=tanx


How does secx plus 1 divided by cotx equal 1 plus sinx divided by cosx?

secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = 1 + sinx/cosx, andsin/cos = tanx, therefore1/cosx + tanx = 1 + tanx, therefore1/cosx = 1, therfore1 = cosx.So, therfore, it is not neccesarily true.But if you meansecx plus 1 divided by cotx equals (1 plus sinx) divided by cosx(this is probably what you mean) Let's start over!secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = (1+sinx)/cosx therefore1/cosx + tanx = 1/cosx + sinx/cosxsinx/cosx = tanx therfore1/cosx + tanx = 1/cosx + tanxDo you think this is correct? Subtract both sides by 1/cosx + tanx:0 = 0So, therefore, this is correct!(BTW, I'm in Grade 6! :P)


Integration by parts of x tanx?

XtanX dx formula uv - int v du u = x du = dx dv = tanX dx v = ln(secX) x ln(secX) - int ln(secx) dx = X ln(secx) - x ln(secx) - x + C -----------------------------------------


Parenthesis 1 plus tanx end parenthesis divided by sinx equals cscx plus secx?

(1 + tanx)/sinxMultiply by sinx/sinxsinx + tanxsinxDivide by sin2x (1/sin2x) = cscxcscx + tan(x)csc(x)tanx = sinx/cosx and cscx = 1/sinxcscx + (sinx/cosx)(1/sinx)sinx cancels outcscx + 1/cosx1/cosx = secxcscx + secx


What is the integral of tanx times sqrt secx dx?

See related link below for answer


How do you simplify cosx plus sinx tanx?

to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))


Tan plus cot divided by tan equals csc squared?

(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.


What is the derivative of secxtanx?

d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)


What is the derivative of 5secx?

You can take out any constant from a derivative. In other words, this is the same as 5 times the derivative of sec x.


How do you take the derivative of a trig function?

Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x