answersLogoWhite

0

Need the fundamental identities here.

tan(X) = sin(X)/cos(X)

sec(X) = 1/cos(X)

so

tan(X)/sec(X)

same as,

sin(X)/cos(X) * cos(X)/1

cancel the cos(X)

= sin(X)

---------------simplest form

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: What is the simplest form for tanx divided by secx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Integration by parts of x tanx?

XtanX dx formula uv - int v du u = x du = dx dv = tanX dx v = ln(secX) x ln(secX) - int ln(secx) dx = X ln(secx) - x ln(secx) - x + C -----------------------------------------


How do you simplify cosx plus sinx tanx?

to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))


What is the derivative of secxtanx?

d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)


What is the derivative of 5secx?

You can take out any constant from a derivative. In other words, this is the same as 5 times the derivative of sec x.


What is the limit of x- sin x cos x over tan x -x as x tends to zero?

It is minus 1 I did this: sinx/cos x = tan x sinx x = cosx tanx you have (x - sinxcosx) / (tanx -x) (x- cos^2 x tan x)/(tanx -x) let x =0 -cos^2 x (tanx) /tanx = -cos^x -cos^2 (0) = -1