By implication : x2-8x+7 = kx-2
Form a quadratic equation: x2-8x-kx+9 = 0
For a line to be a tangent to the curve it must have two equal roots and the discriminant b2-4ac of the quadratic equation must equal 0.
So: (-8-k)2-4*1*9 = 0
(-8-k)2-36 = 0
(-8-k)2 = 36
Square root both sides:
-8-k = -/+6
-k = 2 or 14
k = -2 or -14
When k = -2 is substituted into the quadratic equation x will have two equal roots of 3
When k = -14 is substituted into the quadratic equation x will have two equal roots of -3
They are used to find the angle or side measurement of a right triangle. For example, if 2 sides of a right triangle have known values and an angle has a known measurement, you can find the third side by using sine, cosine or tangent.
In the branch of mathematics called differential geometry, an affine connection is a geometrical object on a smooth manifold which connects nearby tangent spaces, and so permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space.
The formula is A-squared + B-squared = C-squared where A and B are the sides and C is the hypotenuse. Given the values of A and B as 3 inches and 2 inches we can use the formula: 3-squared (9) + 2-squared (4) = 13. The length of the hypotenuse is the square root of 13 (3.6055512).
If the points are (b, 2) and (6, c) then to satisfy the straight line equations it works out that b = -2 and c = 4 which means that the points are (-2, 2) and (6, 4)
x2+y2+4x+6y-40 = 0 and x = 10+y Substitute the second equation into the first equation: (10+y)2+y2+4(10+y)+6y-40 = 0 2y2+30y+100 = 0 Divide all terms by 2: y2+15y+50 = 0 (y+10)(y+5) = 0 => y = -10 or y = -5 Substitute the above values into the second equation to find the points of intersection: Points of intersection are: (0, -10) and (5, -5)
(52/11, 101/11) and (-2, -11) Rearrange 3x-y = 5 into y = 3x-5 and substitute this into the curve equation and then use the quadratic equation formula to find the values of x which leads to finding the values of y by substituting the values of x into y = 3x-5.
If: y = kx -2 and y = x^2 -8x+7 Then the values of k work out as -2 and -14 Note that the line makes contact with the curve in a positive direction or a negative direction depending on what value is used for k.
(x, y) = (-3, -3) or (3, 3)
The possible values for k are -2 and -14 because in order for the line to be tangent to the curve the discriminant must be equal to 0 as follows:- -2x-2 = x2-8x+7 => 6-x2-9 = 0 -14x-2 = x2-8x+7 => -6-x2-9 = 0 Discriminant: 62-4*-1*-9 = 0
-2
If: y = x-4 and y = x2+y2 = 8 then 2x2-8x+8 = 0 and the 3 ways of proof are: 1 Plot the given values on a graph and the line will touch the curve at one point 2 The discriminant of b2-4ac of 2x2-8x+8 must equal 0 3 Solving the equation gives x = 2 or x = 2 meaning the line is tangent to the curve
Since the word 'equals' appears in your questions it might be what is called a trigonometric identity, in other words a statement about a relationship between various trigonometric values.
Using the discriminant the possible values of k are -9 or 9
They intersect at points (-2/3, 19/9) and (3/2, 5) Solved by combining the two equations together to equal nought and then using the quadratic equation formula to find the values of x and substituting these values into the equations to find the values of y.
The gradient to the curve y = x2 - 8x + 7 is dy/dx = 2x - 8The gradient of the tangent to the curve is, therefore, 2x - 8.The gradient of the given line is kTherefore k = 2x - 8. That is, k can have ANY value whatsoever.Another Answer:-If: y = kx-2 and y = x2-8x+7Then: x2-8x+7 = kx-2 => x2-8x-kx+9 = 0Use the discriminant of: b2-4ac = 0So: (-8-k)2-4*1*9 = 0Which is: (-8-k)(-8-k)-36 = 0 => k2+16k+28 = 0Using the quadratic equation formula: k = -2 or k = -14 which are the possible values of k for the straight line to be tangent with the curve
When you graph a tangent function, the asymptotes represent x values 90 and 270.
It is a straight line equation in the form of: y = x+5