27.713 square inches.
Chat with our AI personalities
Using Pythagoras' theorem it is impossible for an equilateral triangle with equal sides of 10 inches to have a height of 7 inches.
I'm showing it with absolute proof. Equilateral triangle both side are same in size & same angel.It's given with the sides of 10 inches & height 7 inches. I don't need to count the height(7),just use side(10).The formula is=Area of a equilateral triangle="root over of 3" /4 * "a square"Now I use this formula,where "a" is 10. So the answers come=43.3,which is 44.So the Correct answer is=44 inches.* * * * *Mostly correct, but:43.3 should be rounded to 43, not 44.The units for the area should be square inches, not inches.
There is a problem with your question, namely that such a triangle does not exist. An equilateral triangle with sides of length 10 would have a height of 5 * (root 3), which is approx 8.66 (not 7 as the question states). An equilateral triangle of side length 10 inches would have an area of 25*(root 3), which is approx. 43.3 inches2.
The area is 1.2 (1.16463) m2
Area of equilateral triangle: 0.5*7*7*sin(60 degrees) = 21.2 square inches