The question comprises two numbers and a letter - possibly a variable - followed by a question mark. There is no indication as to how the numbers relate, if at all, with the letter. Nor is it possible to tell what the question is about.
About 15.87% of people have an IQ over 115.z=(115-100)/15=1Z-score of 1 on a normal distribution means 84.13% have an IQ below 115 and 15.87% have an IQ above 115.IQ Graphhttp://8.17.172.75/uiq/images/bellcurve.gif
sin(z)= (e^(i*z)-e^(-i*z))/(2*i) where i=(-1)^(1/2)
Z2 - 5Z + 4 = 0 (Z- 1)(Z - 4) so, Z = 1 ---------- and Z = 4 -----------
y * (x-1) = z Express as x,divide both sides by y(x - 1) = z/yadd 1 on both sidesx = z/y + 1
(1/x) - (1/y) = (1/z) Get the left-hand side over a common denominator:- (y-x)/xy = 1/z Take the reciprocal of both sides:- z = xy / (y-x)
About 15.87% of people have an IQ over 115.z=(115-100)/15=1Z-score of 1 on a normal distribution means 84.13% have an IQ below 115 and 15.87% have an IQ above 115.IQ Graphhttp://8.17.172.75/uiq/images/bellcurve.gif
Z + or - i and z-1
Let the sides be x y z and their opposite angles be X Y Z Using the cosine rule angle X = 41 degrees Using the cosine rule angle Y = 115 degrees Angle Z: 180-41-115 = 24 degrees
If ' z ' is greater than ' 1 ', then ' z ' is. If ' z ' is less than ' 1 ', then ' 1 ' is.
z2 = z * z * 1; z = z * 1. Greatest common factor is z.
jay z is worth over 400 million and eminem is abour 115 million
Pierre De Fermat 's last Theorem. The conditions: x,y,z,n are the integers and >0. n>2. Proof: z^n=/x^n+y^n. We have; z^3=[z(z+1)/2]^2-[(z-1)z/2]^2 Example; 5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125 And z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2 Example; 5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189 And z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2 Example 5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216 And z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2 Example 5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224 General: z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2 We have; z^3=z^3+(z-m-1)^3 - (z-m-1)^3. Because: z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3] So z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3. Similar: z^3=z^3+(z-m-2)^3 - (z-m-2)^3. So z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3. .... .... Suppose: z^n=x^n+y^n So z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3. So z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3} Similar: z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3. .... .... Because it is codified . So Impossible all are the integers. So: z^n=/x^n+y^n. ISHTAR.
Pierre De Fermat 's last Theorem. The conditions: x,y,z,n are the integers and >0. n>2. Proof: z^n=/x^n+y^n. We have; z^3=[z(z+1)/2]^2-[(z-1)z/2]^2 Example; 5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125 And z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2 Example; 5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189 And z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2 Example 5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216 And z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2 Example 5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224 General: z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2 We have; z^3=z^3+(z-m-1)^3 - (z-m-1)^3. Because: z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3] So z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3. Similar: z^3=z^3+(z-m-2)^3 - (z-m-2)^3. So z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3. .... .... Suppose: z^n=x^n+y^n So z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3. So z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3} Similar: z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3. .... .... Because it is codified . So Impossible all are the integers. So: z^n=/x^n+y^n. ISHTAR.
Pierre De Fermat 's last Theorem. The conditions: x,y,z,n are the integers and >0. n>2. Proof: z^n=/x^n+y^n. We have; z^3=[z(z+1)/2]^2-[(z-1)z/2]^2 Example; 5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125 And z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2 Example; 5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189 And z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2 Example 5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216 And z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2 Example 5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224 General: z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2 We have; z^3=z^3+(z-m-1)^3 - (z-m-1)^3. Because: z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3] So z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3. Similar: z^3=z^3+(z-m-2)^3 - (z-m-2)^3. So z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3. .... .... Suppose: z^n=x^n+y^n So z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3. So z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3} Similar: z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3. .... .... Because it is codified . So Impossible all are the integers. So: z^n=/x^n+y^n. ISHTAR.
120 is one standard deviation greater than the mean (z = 1).So you want Pr(z < 1)The probability of a score at most 1 sd away from the mean is 0.68That is Pr(-1 < z < 1) = 0.68So Pr(|z| > 1) = 1 - 0.68 = 0.32then by symmetry,Pr(z > 1) = 1/2*0.32 = 0.16So Pr(z < 1) = 1 - 0.16 = 0.84120 is one standard deviation greater than the mean (z = 1).So you want Pr(z < 1)The probability of a score at most 1 sd away from the mean is 0.68That is Pr(-1 < z < 1) = 0.68So Pr(|z| > 1) = 1 - 0.68 = 0.32then by symmetry,Pr(z > 1) = 1/2*0.32 = 0.16So Pr(z < 1) = 1 - 0.16 = 0.84120 is one standard deviation greater than the mean (z = 1).So you want Pr(z < 1)The probability of a score at most 1 sd away from the mean is 0.68That is Pr(-1 < z < 1) = 0.68So Pr(|z| > 1) = 1 - 0.68 = 0.32then by symmetry,Pr(z > 1) = 1/2*0.32 = 0.16So Pr(z < 1) = 1 - 0.16 = 0.84120 is one standard deviation greater than the mean (z = 1).So you want Pr(z < 1)The probability of a score at most 1 sd away from the mean is 0.68That is Pr(-1 < z < 1) = 0.68So Pr(|z| > 1) = 1 - 0.68 = 0.32then by symmetry,Pr(z > 1) = 1/2*0.32 = 0.16So Pr(z < 1) = 1 - 0.16 = 0.84
Z is a variable with mean 0 and variance 1.Z is a variable with mean 0 and variance 1.Z is a variable with mean 0 and variance 1.Z is a variable with mean 0 and variance 1.
1 z in a game of scrabble