cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
Cotangent = 1/Tangent : Cosecant = 1/Sine Then, cot + 1 = (1/tan) + 1 = (cos/sin) + (sin/sin) = (cos + sin)/ sin. Now, cos² + sin² = 1 so for the statement to be valid the final expression would have to be : (cos² + sin² ) / sin = 1/sin. As this is not the case then, cot + 1 ≠ cosec. In fact, the relationship link is cot² + 1 = cosec²
Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.
The easiest way to approach this problem is by rewriting the left hand side entirely in terms of sin and cos and then simplifying. To do so, use the fact that cot(x)=cos(x)/sin(x) to get that 2*cot(x)*sin(x)*cos(x)=2*cos(x)/sin(x)*sin(x)*cos(x)=2*cos(x)² Next, we will try to simplify the right hand side by factoring and utilizing the formula cos(x)²+sin(x)²=1 which implies that 1-sin(x)²=cos(x)² 2-2sin(x)²=2*(1-sin(x)²)=2*cos(x)² Since both sides can be simplified to equal the same thing, both sides must always be equal, and the equation 2*cot(x)*sin(x)*cos(x)=2-2sin(x)² must be an identity
cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
cosec(q)*cot(q)*cos(q) = 1/sin(q)*cot(q)*cos(q) = cot2(q)
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
Cotangent = 1/Tangent : Cosecant = 1/Sine Then, cot + 1 = (1/tan) + 1 = (cos/sin) + (sin/sin) = (cos + sin)/ sin. Now, cos² + sin² = 1 so for the statement to be valid the final expression would have to be : (cos² + sin² ) / sin = 1/sin. As this is not the case then, cot + 1 ≠ cosec. In fact, the relationship link is cot² + 1 = cosec²
cot[x]= -1 cot[x] = cos[x] / sin[x] cos[x] / sin[x] = -1 cos[x] = -sin[x] |cos[x]| = |sin[x]| at every multiple of Pi/4 + Pi/2. However, the signs disagree at 3Pi/4 + nPi, where n is an integer.
Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.
The easiest way to approach this problem is by rewriting the left hand side entirely in terms of sin and cos and then simplifying. To do so, use the fact that cot(x)=cos(x)/sin(x) to get that 2*cot(x)*sin(x)*cos(x)=2*cos(x)/sin(x)*sin(x)*cos(x)=2*cos(x)² Next, we will try to simplify the right hand side by factoring and utilizing the formula cos(x)²+sin(x)²=1 which implies that 1-sin(x)²=cos(x)² 2-2sin(x)²=2*(1-sin(x)²)=2*cos(x)² Since both sides can be simplified to equal the same thing, both sides must always be equal, and the equation 2*cot(x)*sin(x)*cos(x)=2-2sin(x)² must be an identity
cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
== cot(x)== 1/tan(x) = cos(x)/sin(x) Now substitute cos(x)/sin(x) into the expression, in place of cot(x) So now: sin(x) cot(x) cos(x) = sin(x) cos(x) (cos(x)/sin(x) ) sin(x) cos(x) cos(x)/sin(x) The two sin(x) cancel, leaving you with cos(x) cos(x) Which is the same as cos2(x) So: sin(x) cot(x) cos(x) = cos2(x) ===
The trig identaty of cot(x) is cos(x)/sin(x) so then if we want to evaluate cot (68) deg. we just plug into the identady. so cos(68)/sin(68)=.404
tan cot sec cosec sin cos cot
y = sec(x)*cot(x)*cos(x)To solve this trigonometric equation, you need to know these identities:sec(x) = 1/(cos(x))cot(x) = 1/(tan(x)) = (cos(x))/(sin(x))Now substitute these identities into the original equation:y = (1/cos(x))*((cos(x))/(sin(x)))*cos(x)Now cancel out the terms that are similar in the numerator and denominator to leave you with:y = (1/(sin(x)))*cos(x)y = (cos(x))/(sin(x))From the aforementioned known identity, the final simplified trigonometric equation becomes:y = cot(x)