answersLogoWhite

0


Best Answer

The Wikipedia article "Trigonometric identities" lists the following identity (in which I am simply changing variables):

cos a sin b = (1/2)[sin(a+b) - sin(a-b)]

Here, since the two angles are the same, this simplifies to:

cos a sin a = (1/2)[sin(2a) - sin(0)]

= (1/2)sin(2a)

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Cos x sin x is equal to?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the exact solution to cosx equals sin2x?

Cos(x) = Sin(2x) Using angle-addition, we have Sin(a+b) = Sin(a)Cos(b) + Sin(b)Cos(a). From that, we see Sin(2x) = Sin(x)Cos(x)+Sin(x)Cos(x) = 2Sin(x)Cos(x) Cos(x) = 2Sin(x)Cos(x) If Cos(x) = 0, then the two sides are equal. This occurs at x= Pi/2 + nPi, where n is an integer and Pi is approximately 3.14. If Cos(x) doesn't equal 0, then we can divide it out. Then, 1 = 2 Sin(x) , or 1/2 = Sin(x) This occurs when x = Pi/6 or 5Pi/6, plus or minus any multiples of 2 Pi.


How do you identify sec x sin x equals tan x?

Rewrite sec x as 1/cos x. Then, sec x sin x = (1/cos x)(sin x) = sin x/cos x. By definition, this is equal to tan x.


Prove each Indentity tanx mins sinx divided by tanxsinx equals tanxsinx divided by tanx plus sinx?

(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True


Why does the derivative of sin x equal cos x reason not prove?

Because the slope of the curve of sin(x) is cos(x). Or, equivalently, the limit of sin(x) over x tends to cos(x) as x tends to zero.


Is 2 cot x sin x cos x equals 2 - 2 sin 2 x an identity?

The easiest way to approach this problem is by rewriting the left hand side entirely in terms of sin and cos and then simplifying. To do so, use the fact that cot(x)=cos(x)/sin(x) to get that 2*cot(x)*sin(x)*cos(x)=2*cos(x)/sin(x)*sin(x)*cos(x)=2*cos(x)² Next, we will try to simplify the right hand side by factoring and utilizing the formula cos(x)²+sin(x)²=1 which implies that 1-sin(x)²=cos(x)² 2-2sin(x)²=2*(1-sin(x)²)=2*cos(x)² Since both sides can be simplified to equal the same thing, both sides must always be equal, and the equation 2*cot(x)*sin(x)*cos(x)=2-2sin(x)² must be an identity

Related questions

When does cos x equal -sin x?

The derivative of cos(x) equals -sin(x); therefore, the anti-derivative of -sin(x) equals cos(x).


Why does the derivative of sin x equal - cos x?

It isn't. The derivate of sin x = cos x.It isn't. The derivate of sin x = cos x.It isn't. The derivate of sin x = cos x.It isn't. The derivate of sin x = cos x.


Why is 2 sin theta cos theta equal to sin 2theta?

because sin(2x) = 2sin(x)cos(x)


How do you show that 2 sin squared x minus 1 divided by sin x minus cos x equals sin x plus cos x?

(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x


Solution for tan x is equal to cos x?

if tan x = cos x then sin x / cos x = cos x => sin x = cos x cos x => sin x = cos2 x => sin x = 1 - sin2x => sin2x + sin x - 1 = 0 Using the quadratic formula => 1. sin x = 0.61803398874989484820458683436564 => x = sin-1 (0.61803398874989484820458683436564) or => 2. sin x = -1.6180339887498948482045868343656 => x = sin-1 (-1.6180339887498948482045868343656)


What is the exact solution to cosx equals sin2x?

Cos(x) = Sin(2x) Using angle-addition, we have Sin(a+b) = Sin(a)Cos(b) + Sin(b)Cos(a). From that, we see Sin(2x) = Sin(x)Cos(x)+Sin(x)Cos(x) = 2Sin(x)Cos(x) Cos(x) = 2Sin(x)Cos(x) If Cos(x) = 0, then the two sides are equal. This occurs at x= Pi/2 + nPi, where n is an integer and Pi is approximately 3.14. If Cos(x) doesn't equal 0, then we can divide it out. Then, 1 = 2 Sin(x) , or 1/2 = Sin(x) This occurs when x = Pi/6 or 5Pi/6, plus or minus any multiples of 2 Pi.


What is Cos squared x equal to?

Cos^2 x = 1 - sin^2 x


What does cosx divided by 1-sinx equal?

cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x


How do you identify sec x sin x equals tan x?

Rewrite sec x as 1/cos x. Then, sec x sin x = (1/cos x)(sin x) = sin x/cos x. By definition, this is equal to tan x.


What does 1 - cos squared equal?

Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.


Prove each Indentity tanx mins sinx divided by tanxsinx equals tanxsinx divided by tanx plus sinx?

(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True


Why does the derivative of sin x equal cos x reason not prove?

Because the slope of the curve of sin(x) is cos(x). Or, equivalently, the limit of sin(x) over x tends to cos(x) as x tends to zero.