It very much depends on f.
If f is one-to-one and onto (injective and surjective) then yes, else no.
One-to-one means that for each element in the domain there is a different image in the range. This is not true for g(x) = x2 for example, where -3 and +3 are both mapped to +9. So g(x) does not have an inverse UNLESS you restrict the domain of g to non-negative reals. Then -3 is no longer in the domain.
Onto means that every element in the range of the function has a corresponding element in the domain which is mapped onto it. Again, a suitable changes to the domain and range can transform a function without an inverse into an invertible one.
Chat with our AI personalities
Assume that f:S->T is invertible with inverse g:T->S, then by definition of invertible mappings f*g=i(S) and g*f=i(T), which defines f as the inverse of g. So g is invertible.
If f(x) = 35/5 + 3 then its inverse is f(x) = 5/3*(x - 3).
Given a function that is one-to-one and onto (a bijection), an inverse relationship is a function that reverses the action of the first function.A simple example to illustrate:if f(x) = x + 2, then g(x) = x - 2 is its inverse. fg(x) = x = gf(x).To find an inverse relationship of a function f(x)write y = f(x) as a function of xswap x and ymake the [new] y the subject of the formulathat is the inverse function.Going back to f(x) = x + 2write y = x + 2swap: x = y + 2make y the subject of the above equation: y = x - 2and so f'(x) is x - 2 where f'(x) represent the inverse of f(x).
Simply stated, the inverse of a function is a function where the variables are reversed. If you have a function f(x) = y, the inverse is denoted as f-1(y) = x. Examples: y=x+3 Inverse is x=y+3, or y=x-3 y=2x+5 Inverse is x=2y+5, or y=(x-5)/2
The inverse is not a function because it fails the vertical line test.