∫(x/(x+1)2)dx
=∫((x+1-1)/(x+1)2)dx
=∫(1/(x+1))dx - ∫(1/(x+1)2)dx
u=x+1, du=dx
∫(1/u)du - ∫(1/u2)du
=log(u) - (-1/u) + C
=log(x+1) + 1/(x+1) + C
Chat with our AI personalities
3
∫ f'(x)/(p2 + q2f(x)2) dx = [1/(pq)]arctan(qf(x)/p)
∫ f'(x)/( q2f(x)2 - p2) dx = [1/(2pq)ln[(qf(x) - p)/(qf(x) + p)]
0.5
∫ f'(x)/√[f(x)2 + a] dx = ln[f(x) + √(f(x)2 + a)] + C C is the constant of integration.