Integral of 1 is x Integral of tan(2x) = Integral of [sin(2x)/cos(2x)] =-ln (cos(2x)) /2 Integral of tan^2 (2x) = Integral of sec^2(2x)-1 = tan(2x)/2 - x Combining all, Integral of 1 plus tan(2x) plus tan squared 2x is x-ln(cos(2x))/2 +tan(2x)/2 - x + C = -ln (cos(2x))/2 + tan(2x)/2 + C
for the integral of (2x)dx/(1+x2 ) Take (1+x2 ) as your 'u' substitution. find du, du= 2x dx use u substitution to write new integral, integral of du/u the integral of du/u= ln abs(u) + C therefore, your original problem becomes an answer with ln ln abs (1+x2) + C *abs refers to absolute value of the parentheses
(-2x2 + x + 1) / (x - 1) = (-2x - 1)(x - 1)/(x - 1) = -2x - 1
x + 1
2x(2x - 1)
Integral of 1 is x Integral of tan(2x) = Integral of [sin(2x)/cos(2x)] =-ln (cos(2x)) /2 Integral of tan^2 (2x) = Integral of sec^2(2x)-1 = tan(2x)/2 - x Combining all, Integral of 1 plus tan(2x) plus tan squared 2x is x-ln(cos(2x))/2 +tan(2x)/2 - x + C = -ln (cos(2x))/2 + tan(2x)/2 + C
The indefinite integral of (1/x^2)*dx is -1/x+C.
for the integral of (2x)dx/(1+x2 ) Take (1+x2 ) as your 'u' substitution. find du, du= 2x dx use u substitution to write new integral, integral of du/u the integral of du/u= ln abs(u) + C therefore, your original problem becomes an answer with ln ln abs (1+x2) + C *abs refers to absolute value of the parentheses
(-2x2 + x + 1) / (x - 1) = (-2x - 1)(x - 1)/(x - 1) = -2x - 1
First we look at the double-angle identity of cos2x. We know that: cos2x = cos^2x - sin^2x cos2x = [1-sin^2x] - sin^2x.............. (From sin^2x + cos^2x = 1, cos^2x = 1 - sin^2x) Therefore: cos2x = 1 - 2sin^2x 2sin^2x = 1 - cos2x sin^2x = 1/2(1-cos2x) sin^2x = 1/2 - cos2x/2 And intergrating, we get: x/2 - sin2x/4 + c...................(Integral of cos2x = 1/2sin2x; and c is a constant)
The integral of a single term of a polynomial, in the form of AxN is (A/N+1) x (N+1). The first integral of 2x is x2 + C. The second integral of 2x is the first integral of x2 + C, which is 1/3x3 + Cx + C.
Hopefully I did this one correctly, if anyone sees an error please correct it. This is the problem:∫(2x+7)/(x2+2x+5)I rewrote the integral as:2∫x/(x2+2x+5) + 7∫1/(x2+2x+5)Both of these parts of the integral is in a form that should be listed in most integral tables in a calculus text book or on-line. From these tables the integral is the following:2*[(1/2)ln|x2+2x+5| - (1/2)tan-1((2x+2)/4)] + 7*[(1/2)tan-1((2x+2)/4)]Combining like terms gives the following:ln|x2+2x+5| + (5/2)*tan-1((2x+2)/4)
x + 1
2x2 + 2x = 2x(x+1)
2x(2x - 1)
Integral of 2x dx /(2x-2) Let 2x=u 2 dx = du dx = (1/2) du Integral of 2x dx /(2x-2) = Integral of (1/2) u du / (u-2) = Integral of 1/2 [ (u-2+2) / (u-2)] dx = Integral of 1/2 [ 1+ 2/(u-2)] dx = u/2 + (1/2) 2 ln(u-2) + C = u/2 + ln(u-2) + C = (2x/2) + ln(2x-2) + C = x + ln(2x-2) + C
(2x - 1)(2x + 1)