0.5
Chat with our AI personalities
integral of 1/(2x)^2=integral 1/4x^2=1/4 integral x^(-2)=1/4*x^(-1)/-1 +c = -1/4x + c
if you ment integral 1/2x^2 then its -1/2x+c
Integral of 1 is x Integral of tan(2x) = Integral of [sin(2x)/cos(2x)] =-ln (cos(2x)) /2 Integral of tan^2 (2x) = Integral of sec^2(2x)-1 = tan(2x)/2 - x Combining all, Integral of 1 plus tan(2x) plus tan squared 2x is x-ln(cos(2x))/2 +tan(2x)/2 - x + C = -ln (cos(2x))/2 + tan(2x)/2 + C
for the integral of (2x)dx/(1+x2 ) Take (1+x2 ) as your 'u' substitution. find du, du= 2x dx use u substitution to write new integral, integral of du/u the integral of du/u= ln abs(u) + C therefore, your original problem becomes an answer with ln ln abs (1+x2) + C *abs refers to absolute value of the parentheses
(-2x2 + x + 1) / (x - 1) = (-2x - 1)(x - 1)/(x - 1) = -2x - 1
x + 1
2x(2x - 1)