There are several infinite series. To find PI to x digits, evaluate each term to x+2 digits until the value is 0. Then round to x digits.
1,944 = 1296 x 1.5
The answer depends on what information you have been provided with.
That depends under what context v is used because its can have infinite values.
There is no simple answer. There are simple formulae for simple sequences such as arithmetic or geometric progressions; there are less simple solutions arising from Taylor or Maclaurin series. But for the majority of sequences there are no solutions.
There are several infinite series. To find PI to x digits, evaluate each term to x+2 digits until the value is 0. Then round to x digits.
1,944 = 1296 x 1.5
160... I think. The series is 80+40+20+10+5+2.5+............ (Given the series is infinite it never ends but it gets pretty close to 160) = 159.99999999... ad infinitum [For future reference... series like this are basically equal to 2*the highest value e.g. 2*80=160]
It is 58465.
The answer depends on what information you have been provided with.
Divide any term in the sequence by the previous term. That is the common ratio of a geometric series. If the series is defined in the form of a recurrence relationship, it is even simpler. For a geometric series with common ratio r, the recurrence relation is Un+1 = r*Un for n = 1, 2, 3, ...
1/8
An infinite geometric series can be summed only if the common ratio has an absolute value less than 1. Suppose the sum to n terms is S(n). That is, S(n) = a + ar + ar2 + ... + arn-1 Multipying through by the common ratio, r, gives r*S(n) = ar + ar2 + ar3 + ... + arn Subtracting the second equation from the first, S(n) - r*S(n) = a - arn (1 - r)*S(n) = a*(1 - rn) Dividing by (1 - r), S(n) = (1 - rn)/(1 - r) Now, since |r| < 1, rn tends to 0 as n tends to infinity and so S(n) tends to 1/(1 - r) or, the infinite sum is 1/(1 - r)
The Nth partial sum is the sum of the first n terms in an infinite series.
That depends under what context v is used because its can have infinite values.
value on a 1979 series e $50 bond
For a number to be rational you need to be able to write it as a fraction. To answer your question, it must repeat as a decimal or else terminate which can be thought of as repeating zeroes. Further, every repeating decimal can be written as a fraction and you can find the fraction by using the formula for the sum of an infinite geometric series.