The answer depends on what information you have been provided with.
Divide any term, except the first, by the term before it.
In a geometric sequence, each term is found by multiplying the previous term by a constant ratio ( r ). The ( n )-th term can be expressed as ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term. For the sum of the first ( n ) terms of a geometric series, the formula is ( S_n = a_1 \frac{1 - r^n}{1 - r} ) for ( r \neq 1 ), while for an infinite geometric series, if ( |r| < 1 ), the sum is ( S = \frac{a_1}{1 - r} ).
Geometric series may be defined in terms of the common ratio, r, and either the zeroth term, a(0), or the first term, a(1).Accordingly,a(n) = a(0) * r^n ora(n) = a(1) * r^(n-1)
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
The summation of a geometric series to infinity is equal to a/1-rwhere a is equal to the first term and r is equal to the common difference between the terms.
A geometric series represents the partial sums of a geometric sequence. The nth term in a geometric series with first term a and common ratio r is:T(n) = a(1 - r^n)/(1 - r)
1/8
The sum to infinity of a geometric series is given by the formula Sā=a1/(1-r), where a1 is the first term in the series and r is found by dividing any term by the term immediately before it.
the series can be 1,-4,16,-64
Divide any term, except the first, by the term before it.
In a geometric sequence, each term is found by multiplying the previous term by a constant ratio ( r ). The ( n )-th term can be expressed as ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term. For the sum of the first ( n ) terms of a geometric series, the formula is ( S_n = a_1 \frac{1 - r^n}{1 - r} ) for ( r \neq 1 ), while for an infinite geometric series, if ( |r| < 1 ), the sum is ( S = \frac{a_1}{1 - r} ).
Geometric series may be defined in terms of the common ratio, r, and either the zeroth term, a(0), or the first term, a(1).Accordingly,a(n) = a(0) * r^n ora(n) = a(1) * r^(n-1)
The geometric sequence with three terms with a sum of nine and the sum to infinity of 8 is -9,-18, and 36. The first term is -9 and the common ratio is -2.
Divide any term in the sequence by the previous term. That is the common ratio of a geometric series. If the series is defined in the form of a recurrence relationship, it is even simpler. For a geometric series with common ratio r, the recurrence relation is Un+1 = r*Un for n = 1, 2, 3, ...
nth term Tn = arn-1 a = first term r = common factor
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5