answersLogoWhite

0

The answer depends on what information you have been provided with.

User Avatar

Wiki User

āˆ™ 8y ago

What else can I help you with?

Related Questions

What does Geometric Series represent?

A geometric series represents the partial sums of a geometric sequence. The nth term in a geometric series with first term a and common ratio r is:T(n) = a(1 - r^n)/(1 - r)


A geometric series has first term 4 and its sum to infinity is 5 Find the common ratio?

1/8


A geometric progression has a common ratio -1/2 and the sum of its first 3 terms is 18. Find the sum to infinity?

The sum to infinity of a geometric series is given by the formula Sāˆž=a1/(1-r), where a1 is the first term in the series and r is found by dividing any term by the term immediately before it.


The fourth term of a geometric sequence is -64 the product of the first and third term is 16?

the series can be 1,-4,16,-64


How do you find the ratio in the geometric progression?

Divide any term, except the first, by the term before it.


What are the formulas for geometric sequences and series?

In a geometric sequence, each term is found by multiplying the previous term by a constant ratio ( r ). The ( n )-th term can be expressed as ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term. For the sum of the first ( n ) terms of a geometric series, the formula is ( S_n = a_1 \frac{1 - r^n}{1 - r} ) for ( r \neq 1 ), while for an infinite geometric series, if ( |r| < 1 ), the sum is ( S = \frac{a_1}{1 - r} ).


What does an equal in geometric series?

Geometric series may be defined in terms of the common ratio, r, and either the zeroth term, a(0), or the first term, a(1).Accordingly,a(n) = a(0) * r^n ora(n) = a(1) * r^(n-1)


The sum to three terms of geometric series is 9 and its sum to infinity is 8. What could you deduce about the common ratio. Why. Find the first term and common ratio?

The geometric sequence with three terms with a sum of nine and the sum to infinity of 8 is -9,-18, and 36. The first term is -9 and the common ratio is -2.


How do you find the common ratio in a geometric sequence?

Divide any term in the sequence by the previous term. That is the common ratio of a geometric series. If the series is defined in the form of a recurrence relationship, it is even simpler. For a geometric series with common ratio r, the recurrence relation is Un+1 = r*Un for n = 1, 2, 3, ...


How do you find the given term in a geometric sequence?

nth term Tn = arn-1 a = first term r = common factor


What is the 6th term of the geometric sequence below?

To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.


What is the 7th term in the geometric sequence whose first term is 5 and the common ratio is -2?

Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5