2
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).
Writing a quadratic equation in vertex form, ( y = a(x-h)^2 + k ), highlights the vertex of the parabola, making it easier to graph and identify key features like the maximum or minimum value. In contrast, standard form, ( y = ax^2 + bx + c ), is useful for quickly determining the y-intercept and applying the quadratic formula for finding roots. When working with vertex form, methods like completing the square can be employed to convert from standard form, while factoring or using the quadratic formula can be more straightforward when in standard form. Each form serves specific purposes depending on the analysis needed.
Do you have a specific vertex fraction? vertex = -b/2a wuadratic = ax^ + bx + c
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
2
y= -5/49(x-9)^2+5
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
You complete the squares. y = ax2 + bx + c = (ax2 + b/2a)2 + c - b2/(4a2)
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).
You have written it in standard form.
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
The plural form of vertex is vertices or vertexes.
Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2
Do you have a specific vertex fraction? vertex = -b/2a wuadratic = ax^ + bx + c