To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).
To find the vertex of a parabola in standard form, which is given by the equation ( y = ax^2 + bx + c ), you can use the formula for the x-coordinate of the vertex: ( x = -\frac{b}{2a} ). Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. The vertex will then be at the point ( (x, y) ).
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
To find the vertex of a parabola given its equation in standard form (y = ax^2 + bx + c), you can use the formula for the x-coordinate of the vertex: (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. Thus, the vertex can be expressed as the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))). For parabolas in vertex form (y = a(x-h)^2 + k), the vertex is simply the point ((h, k)).
The given equation is y = x - 4x + 2 which can be written as y = -3x + 2 This is an equation of a straight line. Therefore it has no vertex and so cannot be written in vertex form.
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
The vertex form for a quadratic equation is y=a(x-h)^2+k.
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
To find the vertex of a parabola given its equation in standard form (y = ax^2 + bx + c), you can use the formula for the x-coordinate of the vertex: (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. Thus, the vertex can be expressed as the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))). For parabolas in vertex form (y = a(x-h)^2 + k), the vertex is simply the point ((h, k)).
Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2
-2
The given equation is y = x - 4x + 2 which can be written as y = -3x + 2 This is an equation of a straight line. Therefore it has no vertex and so cannot be written in vertex form.
To convert the vertex form of a parabola, which is typically expressed as (y = a(x-h)^2 + k), into standard form (y = ax^2 + bx + c), you need to expand the equation. Start by squaring the binomial ((x-h)), which gives (x^2 - 2hx + h^2). Then, distribute the coefficient (a) and combine like terms to achieve the standard form. The resulting equation will be (y = ax^2 - 2ahx + (ah^2 + k)).
A quadratic equation in standard form, ( ax^2 + bx + c ), can be rewritten in vertex form, ( a(x-h)^2 + k ), through the process of completing the square. First, factor out ( a ) from the ( x^2 ) and ( x ) terms, then manipulate the equation to create a perfect square trinomial inside the parentheses. The vertex ( (h, k) ) can be found from the values derived during this process, specifically ( h = -\frac{b}{2a} ) and ( k ) can be calculated by substituting ( h ) back into the original equation.