Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
The given equation is y = x - 4x + 2 which can be written as y = -3x + 2 This is an equation of a straight line. Therefore it has no vertex and so cannot be written in vertex form.
2
A standard form of a linear equation would be: ax + by = c
5
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
The vertex form for a quadratic equation is y=a(x-h)^2+k.
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2
-2
The given equation is y = x - 4x + 2 which can be written as y = -3x + 2 This is an equation of a straight line. Therefore it has no vertex and so cannot be written in vertex form.
look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)
The question does not contain an equation: only an expression. An expression cannot have a vertex form.
its a simple parobola symmetric about y axis, having its vertex at (0,-4). we can make its graph by changing its equation in standard form so that we can get its different standard points like vertex, focus, etc.