It is the average velocity.
-- Pick two points on the graph. -- Find the difference in time between the two points. -- Find the difference in displacement between the same two points. -- (Difference in displacement) divided by (difference in time) is the average Speed . You can't tell anything about velocity from the graph except its magnitude, because the graph displays no information regarding the direction of motion.
Average Velocity
Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.
A velocity time graph is still a velocity time graph - no matter the degree of detail that you look at it.
To find the average speed from a velocity-time graph, calculate the total distance traveled and divide it by the total time taken. This will give you the average speed. Alternatively, you can find the slope of the secant line that connects the initial and final points on the graph to determine the average speed.
The slope of a position-time graph represents the average velocity of an object. It does not represent the rate of change of velocity, which would be represented by the slope of a velocity-time graph.
To find instantaneous velocity from a position-time graph, you calculate the slope of the tangent line at a specific point on the graph. The slope represents the rate of change of position at that instant, which is equivalent to the velocity at that particular moment.
The average velocity for an interval must be plotted at the middle of the time interval to represent an instantaneous velocity on a velocity-time graph.
It is the average velocity.
-- Pick two points on the graph. -- Find the difference in time between the two points. -- Find the difference in displacement between the same two points. -- (Difference in displacement) divided by (difference in time) is the average Speed . You can't tell anything about velocity from the graph except its magnitude, because the graph displays no information regarding the direction of motion.
No, average velocity is the total displacement divided by the total time taken. The slope of the tangent to the curve on a velocity-time graph at a specific instant of time gives the instantaneous velocity at that moment, not the average velocity.
Displacement divided by time gives you the average velocity of an object. Velocity is a vector quantity that includes both the speed of an object and its direction of motion.
To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.
Yes, it is.
Average Velocity
To obtain average velocity from a displacement-time graph, divide the total displacement by the total time taken. For instantaneous velocity, find the slope of the tangent to the curve at a specific point on the graph. This tangent represents the velocity at that instant.