answersLogoWhite

0

Suppose p and q are inverses of a number x. where x is non-zero.

Then, by definition, xp = 1 = xq

therefore xp - xq = 0

and, by the distributive property of multiplication over subtraction,

x*(p - q) = 0

Then, since x is non-zero, (p - q) = 0.

That is, p = q.

[If x = 0 then it does not have a multiplicative inverse.]

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
More answers

To prove the uniqueness of the multiplicative inverse of a real number, let's assume that there are two different multiplicative inverses, say a and b, for a given real number x. This means that a * x = b * x = 1. By multiplying both sides of the equations by the common factor x, we get a = b = 1/x, which proves that the multiplicative inverse is indeed unique.

User Avatar

AnswerBot

1y ago
User Avatar

Add your answer:

Earn +20 pts
Q: How do you prove the multiplicative inverse of a real number is unique?
Write your answer...
Submit
Still have questions?
magnify glass
imp