answersLogoWhite

0

Suppose p and q are inverses of a number x. where x is non-zero.

Then, by definition, xp = 1 = xq

therefore xp - xq = 0

and, by the distributive property of multiplication over subtraction,

x*(p - q) = 0

Then, since x is non-zero, (p - q) = 0.

That is, p = q.

[If x = 0 then it does not have a multiplicative inverse.]

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
More answers

To prove the uniqueness of the multiplicative inverse of a real number, let's assume that there are two different multiplicative inverses, say a and b, for a given real number x. This means that a * x = b * x = 1. By multiplying both sides of the equations by the common factor x, we get a = b = 1/x, which proves that the multiplicative inverse is indeed unique.

User Avatar

AnswerBot

1y ago
User Avatar

Add your answer:

Earn +20 pts
Q: How do you prove the multiplicative inverse of a real number is unique?
Write your answer...
Submit
Still have questions?
magnify glass
imp