answersLogoWhite

0

There are several different ways and the answers depend on what is known about the triangles.

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Why is AAA not an appropriate conjecture for triangle congruence?

It does not necessarily prove congruence but it does prove similarity. You can have a smaller or bigger triangle that has the same interior angles.


Why cant you have SSA be a proof of triangle congruence?

SSA (Side-Side-Angle) cannot be a proof of triangle congruence because it does not guarantee that the two triangles formed are congruent. The angle can be positioned in such a way that two different triangles can have the same two sides and the same angle, leading to the ambiguous case known as the "SSA ambiguity." This means two distinct triangles could satisfy the SSA condition, thus failing to prove congruence. Therefore, other criteria like SSS, SAS, or ASA must be used for triangle congruence.


What is rhs congruence triangle?

A triangle having 3 congruent sides is an equilateral triangle


Which additional congruence statement could you use to prove that mc110-2.jpgby HL?

To prove triangles are congruent by the Hypotenuse-Leg (HL) theorem, you need to establish that both triangles have a right angle, and that the hypotenuse and one leg of one triangle are congruent to the hypotenuse and one leg of the other triangle, respectively. An additional congruence statement that could be used is that the lengths of the hypotenuses of both triangles are equal, along with confirming that one leg in each triangle is also equal in length. This information is sufficient to apply the HL theorem for congruence.


After congruence transformation the area of a triangle would be?

After a congruence transformation, the area of a triangle remains unchanged. Congruence transformations, such as rotations, translations, and reflections, preserve the shape and size of geometric figures. Therefore, while the position or orientation of the triangle may change, its area will stay the same.

Related Questions

Why is AAA not an appropriate conjecture for triangle congruence?

It does not necessarily prove congruence but it does prove similarity. You can have a smaller or bigger triangle that has the same interior angles.


Which triangle Congruence Postulate can be used to prove that PAC PBC?

SAS


What are the only two triangle congruence shortcuts that do not work?

The only Two Triangle congruence shortcuts that do not prove congruence are: 1.AAA( Three pairs of angles in a triangle) & 2.ASS or SSA(If the angle is not in between the two sides like ASA.


which property can you use t prove that IF....?

reflexive property of congruence


which congruence postulate or theorem would you use to prove MEX?

HL congruence theorem


What are the 2 triangle congruence theorems?

The two triangle congruence theorems are the AAS(Angle-Angle-Side) and HL(Hypotenuse-Leg) congruence theorems. The AAS congruence theorem states that if two angles and a nonincluded side in one triangle are congruent to two angles and a nonincluded side in another triangle, the two triangles are congruent. In the HL congruence theorem, if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.


What is rhs congruence triangle?

A triangle having 3 congruent sides is an equilateral triangle


Which additional congruence statement could you use to prove that mc110-2.jpgby HL?

To prove triangles are congruent by the Hypotenuse-Leg (HL) theorem, you need to establish that both triangles have a right angle, and that the hypotenuse and one leg of one triangle are congruent to the hypotenuse and one leg of the other triangle, respectively. An additional congruence statement that could be used is that the lengths of the hypotenuses of both triangles are equal, along with confirming that one leg in each triangle is also equal in length. This information is sufficient to apply the HL theorem for congruence.


Which of the following is the right triangle congruence theorem?

There is nothing specific folloing right triangle congruence theorem. It depends on the order in whih the syllabus is taught.


Given that bd is both the median and altitude of a abc. congruence postulate sas is used to prove that abc is what type of triangle?

BAD = BCD is the answer i just did it


What is the definition of AAS Congruence postulate of trianges?

It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.


Is a ASA triangle similarity postulate?

Since ASA is a congruence postulate and congruence implies similarity, then the answer is : yes.