There are several different ways and the answers depend on what is known about the triangles.
It does not necessarily prove congruence but it does prove similarity. You can have a smaller or bigger triangle that has the same interior angles.
SSA (Side-Side-Angle) cannot be a proof of triangle congruence because it does not guarantee that the two triangles formed are congruent. The angle can be positioned in such a way that two different triangles can have the same two sides and the same angle, leading to the ambiguous case known as the "SSA ambiguity." This means two distinct triangles could satisfy the SSA condition, thus failing to prove congruence. Therefore, other criteria like SSS, SAS, or ASA must be used for triangle congruence.
A triangle having 3 congruent sides is an equilateral triangle
To prove triangles are congruent by the Hypotenuse-Leg (HL) theorem, you need to establish that both triangles have a right angle, and that the hypotenuse and one leg of one triangle are congruent to the hypotenuse and one leg of the other triangle, respectively. An additional congruence statement that could be used is that the lengths of the hypotenuses of both triangles are equal, along with confirming that one leg in each triangle is also equal in length. This information is sufficient to apply the HL theorem for congruence.
After a congruence transformation, the area of a triangle remains unchanged. Congruence transformations, such as rotations, translations, and reflections, preserve the shape and size of geometric figures. Therefore, while the position or orientation of the triangle may change, its area will stay the same.
It does not necessarily prove congruence but it does prove similarity. You can have a smaller or bigger triangle that has the same interior angles.
SAS
The only Two Triangle congruence shortcuts that do not prove congruence are: 1.AAA( Three pairs of angles in a triangle) & 2.ASS or SSA(If the angle is not in between the two sides like ASA.
reflexive property of congruence
HL congruence theorem
The two triangle congruence theorems are the AAS(Angle-Angle-Side) and HL(Hypotenuse-Leg) congruence theorems. The AAS congruence theorem states that if two angles and a nonincluded side in one triangle are congruent to two angles and a nonincluded side in another triangle, the two triangles are congruent. In the HL congruence theorem, if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.
A triangle having 3 congruent sides is an equilateral triangle
To prove triangles are congruent by the Hypotenuse-Leg (HL) theorem, you need to establish that both triangles have a right angle, and that the hypotenuse and one leg of one triangle are congruent to the hypotenuse and one leg of the other triangle, respectively. An additional congruence statement that could be used is that the lengths of the hypotenuses of both triangles are equal, along with confirming that one leg in each triangle is also equal in length. This information is sufficient to apply the HL theorem for congruence.
There is nothing specific folloing right triangle congruence theorem. It depends on the order in whih the syllabus is taught.
BAD = BCD is the answer i just did it
It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.
Since ASA is a congruence postulate and congruence implies similarity, then the answer is : yes.