Just one plane.
One.exactly one
just one
Three noncollinear points ( A ), ( B ), and ( C ) determine exactly three lines: line ( AB ), line ( BC ), and line ( AC ). Each pair of points defines a unique line, and since the points are noncollinear, no two lines coincide. Thus, the total number of lines determined by points ( A ), ( B ), and ( C ) is three.
The answer depends on the number of point. One point - as the question states - cannot be non-collinear. Any two points are always collinear. But three or more points will define a plane. If four points are non-coplanar, they will define four planes (as in a tetrahedron).
Three noncollinear points A, B, and C determine exactly three lines. Each pair of points can be connected to form a line: line AB between points A and B, line AC between points A and C, and line BC between points B and C. Thus, the total number of lines determined by points A, B, and C is three.
1 line cause every plane contains atleast 3 or more noncollinear points
3 non-collinear points define one plane.
One.exactly one
just one
The answer depends on the number of point. One point - as the question states - cannot be non-collinear. Any two points are always collinear. But three or more points will define a plane. If four points are non-coplanar, they will define four planes (as in a tetrahedron).
Three noncollinear points A, B, and C determine exactly three lines. Each pair of points can be connected to form a line: line AB between points A and B, line AC between points A and C, and line BC between points B and C. Thus, the total number of lines determined by points A, B, and C is three.
Only one plane can pass through 3 non-collinear points.
A plane
10!
one
Three.
The shape identified by three noncollinear points.