3 - hht, hth, thh
I TRIED to use capital letters and got a "take the caps lock off".
I have always used capital letters to indicate heads and tails, but the answer is 3.
480
3
Heads or tails; each have a probability of 0.5 (assuming a fair coin).
To represent all possible combinations of tossing a coin and drawing a card from a standard deck, you need to consider both events. Tossing a coin has 2 outcomes (heads or tails), and drawing a card from a standard deck has 52 outcomes. Therefore, the total number of combinations is 2 (coin outcomes) multiplied by 52 (card outcomes), resulting in 104 leaves on the tree diagram.
If you know that two of the four are already heads, then all you need to find isthe probability of exactly one heads in the last two flips.Number of possible outcomes of one flip of one coin = 2Number of possible outcomes in two flips = 4Number of the four outcomes that include a single heads = 2.Probability of a single heads in the last two flips = 2/4 = 50%.
The outcomes are: heads, tails, tails or tails, heads, tails or tails, tails, heads. You can see that there are 3 possible outcomes with exactly 1 head.
480
3
Heads or tails; each have a probability of 0.5 (assuming a fair coin).
There are 210 total possible outcomes from flipping a coin 10 times.There is one possible outcome where there are 0 heads.There are 10 possible outcomes where there is 1 head.So there are 210 - 11 possible outcomes with at least 2 heads.(1013)
There are 24 possible outcomes: January-Heads, January-Tails, February-Heads, February-Tails, March-Heads, and so on.
three heads two head, one tails one heads, two tails three tails
There are 4 possible outcomes, HH, HT, TH, TT. If we assume the odds of tossing heads or tails on any toss is 1/2 (50:50) the odds of tossing heads twice in a row is 1/4 (or 25%).
Each coin can come out either heads (H) or tales (T). Since you're tossing four coins at once, I'm assuming there is no sense of order to be accounted for. In that case, the possible outcomes are the following: HHHH HHHT HHTT HTTT TTTT
To represent all possible combinations of tossing a coin and drawing a card from a standard deck, you need to consider both events. Tossing a coin has 2 outcomes (heads or tails), and drawing a card from a standard deck has 52 outcomes. Therefore, the total number of combinations is 2 (coin outcomes) multiplied by 52 (card outcomes), resulting in 104 leaves on the tree diagram.
If you know that two of the four are already heads, then all you need to find isthe probability of exactly one heads in the last two flips.Number of possible outcomes of one flip of one coin = 2Number of possible outcomes in two flips = 4Number of the four outcomes that include a single heads = 2.Probability of a single heads in the last two flips = 2/4 = 50%.
The possible outcomes of a coin that is flipped are heads or tails.