The graph of ax + by = c is a straight line going through the points (0, c/b) and (c/a, 0).
Collinear.
This depends on what the points are for B, and C.
If points B and C are collinear, it means that they lie on the same straight line. To determine if points B and C are collinear, you would need to know the coordinates or have a visual representation of the points.
There cannot be such a postulate because it is not true. Consider a line segment AB and let C be any point on the line between A and B. If the three points are A, B and C, there can be no circle that goes through them. It is so easy to show that the postulate is false that no mathematician would want his (they were mostly male) name associated with such nonsense. Well, if one of the points approach the line that goes through the other two points, the radius of the circle diverges. The line is the limit of the ever-growing circles. In the ordinary plane, the limit itself does not exist as a circle, but mathematicians have supplemented the plane with infinity to "hold" the centres of such "straight" circles.
The graph of ax + by = c is a straight line going through the points (0, c/b) and (c/a, 0).
This has infinite no. of solutions.
They are collinear points that lie on the same line
Collinear.
Two points determine a unique line. Therefore, there are infinitely many circles that can pass through two given points. This is because a circle can be defined by its center, which can lie anywhere along the perpendicular bisector of the line segment connecting the two points.
This depends on what the points are for B, and C.
gradient = (-2-5) / (2-1) = -7 hence y = -7x + C Since a point on the line is (1,5) 5 = -7 + C from which we have C = 12 The equation is y = 12 - 7x
2 lines, I believe.
If points B and C are collinear, it means that they lie on the same straight line. To determine if points B and C are collinear, you would need to know the coordinates or have a visual representation of the points.
the legar line
There are infinite circles which can be drawn with 2 defined points.. Because if we have 2 points then we can draw infinite equal intersecting lines in infinite directions, These intersecting lines are the radii of the circles. Like : we have 2 points You can draw infinite isosceles triangles as taking the line joining the points For example (activity) : we have 2 points A, B so let's join A and B which will make line AB and so let's take another point C and place that point in such a way that AC = AB and we observe that there are infinite points which can be placed in such a way like how we marked C. Now draw a circle with center C and radius A, we will observe that the circle also cuts through B and so as we have infinite points like C, so we can have infinite circles ..... And so we conclude that infinite circles with different radii can be drawn through two defined distant points ...
There cannot be such a postulate because it is not true. Consider a line segment AB and let C be any point on the line between A and B. If the three points are A, B and C, there can be no circle that goes through them. It is so easy to show that the postulate is false that no mathematician would want his (they were mostly male) name associated with such nonsense. Well, if one of the points approach the line that goes through the other two points, the radius of the circle diverges. The line is the limit of the ever-growing circles. In the ordinary plane, the limit itself does not exist as a circle, but mathematicians have supplemented the plane with infinity to "hold" the centres of such "straight" circles.