Yes, every subgroup of a cyclic group is cyclic because every subgroup is a group.
every abelian group is not cyclic. e.g, set of (Q,+) it is an abelian group but not cyclic.
No.
No! Take the quaternion group Q_8.
In abstract algebra, a generating set of a group Gis a subset S such that every element of G can be expressed as the product of finitely many elements of S and their inverses.More generally, if S is a subset of a group G, then , the subgroup generated by S, is the smallest subgroup of G containing every element of S, meaning the intersection over all subgroups containing the elements of S; equivalently, is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses.If G = , then we say S generatesG; and the elements in S are called generators or group generators. If S is the empty set, then is the trivial group {e}, since we consider the empty product to be the identity.When there is only a single element x in S, is usually written as . In this case, is the cyclic subgroup of the powers of x, a cyclic group, and we say this group is generated by x. Equivalent to saying an element x generates a group is saying that it has order |G|, or that equals the entire group G.My source is linked below.
Four of them.
The order of a cyclic group is the number of distinct elements in the group. It is also the smallest power, k, such that xk = i for all elements x in the group (i is the identity).
Normally, a cyclic group is defined as a set of numbers generated by repeated use of an operator on a single element which is called the generator and is denoted by g.If the operation is multiplicative then the elements are g0, g1, g2, ...Such a group may be finite or infinite. If for some integer k, gk = g0 then the cyclic group is finite, of order k. If there is no such k, then it is infinite - and is isomorphic to Z(integers) with the operation being addition.
Yes, every subgroup of a cyclic group is cyclic because every subgroup is a group.
every abelian group is not cyclic. e.g, set of (Q,+) it is an abelian group but not cyclic.
No.
No Q is not cyclic under addition.
Cyclic photophosphorylation is when the electron from the chlorophyll went through the electron transport chain and return back to the chlorophyll. Noncyclic photophosphorylation is when the electron from the chlorophyll doesn't return back but incorporated into NADPH.
No, for instance the Klein group is finite and abelian but not cyclic. Even more groups can be found having this chariacteristic for instance Z9 x Z9 is abelian but not cyclic
The generators of the Lorentz group are the angular momentum and boost operators. These generators correspond to the rotations and boosts in spacetime that are part of the Lorentz transformations. The generators dictate how the group's transformations act on spacetime coordinates and physical quantities.
Let G be the cyclic group generated by x, say. Ten every elt of G is of the form x^a, for some a
No! Take the quaternion group Q_8.