r=[A]m[B]n APPLEX
To calculate the rate of a reaction, you typically use the rate law equation, which can be expressed as ( \text{Rate} = k[A]^m[B]^n ), where ( k ) is the rate constant, ( [A] ) and ( [B] ) are the concentrations of the reactants, and ( m ) and ( n ) are their respective orders. Assuming a simple first-order reaction with respect to both A and B (i.e., ( m = n = 1 )), the rate would be calculated as ( \text{Rate} = 0.1 \times (1)^1 \times (2)^1 = 0.2 , \text{M/s} ). Thus, the reaction rate is 0.2 M/s.
The Law of 4 Laws of addition and multiplication Commutative laws of addition and multiplication. Associative laws of addition and multiplication. Distributive law of multiplication over addition. Commutative law of addition: m + n = n + m . A sum isn't changed at rearrangement of its addends. Commutative law of multiplication: m · n = n · m . A product isn't changed at rearrangement of its factors. Associative law of addition: ( m + n ) + k = m + ( n + k ) = m + n + k . A sum doesn't depend on grouping of its addends. Associative law of multiplication: ( m · n ) · k = m · ( n · k ) = m · n · k . A product doesn't depend on grouping of its factors. Distributive law of multiplication over addition: ( m + n ) · k = m · k + n · k . This law expands the rules of operations with brackets (see the previous section).
In the context of chemistry, "k Rate kAmBn" refers to the rate constant (k) of a reaction involving reactants A and B, where "m" and "n" represent the stoichiometric coefficients of these reactants in the rate law. The rate of the reaction can be expressed as proportional to the concentrations of A and B raised to their respective powers, leading to the equation: rate = k [A]^m [B]^n. This relationship helps in understanding how changes in concentration affect the speed of the reaction.
Exponents are subject to many laws, just like other mathematical properties. These are X^1 = X, X^0 = 1, X^-1 = 1/X, X^m * X^n = X^m+n, X^m/X^n = X^m-n, (X^m)^n = X^(m*n), (XY)^n = X^n * Y^n, (X/Y)^n = X^n/Y^n, and X^-n = 1/X^n.
Rate = k[A]m[B]n
They are experimentally determined exponents.
r=[A]m[B]n APPLEX
They are experimentally determined exponents
The general form of a rate law is rate = k[A]^m[B]^n, where rate is the reaction rate, k is the rate constant, [A] and [B] are the concentrations of reactants A and B, and m and n are the respective reaction orders for A and B.
The equation is called the rate law equation. For the reaction aA+bB =>cC+dD the rate law would be rate = k[A]^m[B]^n where k is the rate constant and m and n are the "order" with respect to each reactant. m and n must be determined experimentally and may or may not be the same as the coefficients a and b.
r=[A]m[B]n APPLEX
The rate of the reaction can be calculated using the rate law rate = k[A]^m[B]^n. Plugging in the given values: rate = 0.02*(3)^3*(3)^3 = 0.022727 = 14.58 M/s.
5.4 (apex)
The rate of the reaction can be calculated using the rate law equation rate = k[A]^m[B]^n. Plugging in the given values k = 0.2, m = 1, n = 2, [A] = 3 M, and [B] = 3 M into the equation gives rate = 0.2 * (3)^1 * (3)^2 = 16.2 M/s.
The rate law for this reaction is rate = k[A]^m[B]^n. From the given information, substituting the values for rate, [A], [B], and the exponents m and n, you can solve for the rate constant k. In this case, k = rate / ([A]^m[B]^n), so k = 2 / (10^2 * 3^1).
4.5 (mol/L)/s