16
The greatest 4-digit number that is divisible by 16 is 9984
There are 12C4 4 NUMBER combinations. And that equals 12*11*10*9/(4/3/2/1) = 495 combinations. However, some of these, although 4 number combinations consist of 7 digits eg 1, 10, 11, and 12. Are you really sure you want 4-DIGIT combinations?
16. There are two choices for the first digit (3 and 6). For either choice of first digit there are two choices for the second digit, and so on. 2 x 2 x 2 x 2 = 16.
Assuming the digits are not repeated, there are four combinations:123, 124, 134 and 234.
This question needs clarificatioh. There are 4 one digit number combinations, 16 two digit combinations, ... 4 raised to the n power for n digit combinations.
16
The greatest 4-digit number that is divisible by 16 is 9984
To calculate the number of 4-number combinations possible with 16 numbers, you would use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n = 16 (the total number of numbers) and r = 4 (the number of numbers in each combination). Plugging these values into the formula, you would calculate 16C4 = 16! / 4!(16-4)! = 1820. Therefore, there are 1820 possible 4-number combinations with 16 numbers.
For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.
There are 12C4 4 NUMBER combinations. And that equals 12*11*10*9/(4/3/2/1) = 495 combinations. However, some of these, although 4 number combinations consist of 7 digits eg 1, 10, 11, and 12. Are you really sure you want 4-DIGIT combinations?
the answer is = first 2-digit number by using 48= 28,82 and in 3 digit is=282,228,822,822
16. There are two choices for the first digit (3 and 6). For either choice of first digit there are two choices for the second digit, and so on. 2 x 2 x 2 x 2 = 16.
To calculate the number of different 4-digit combinations that can be made using numbers 0 through 9, we use the concept of permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the number of options for each digit (10 in this case) and r is the number of digits (4 in this case). Therefore, the number of different 4-digit combinations that can be made using numbers 0 through 9 is 10^4, which equals 10,000 combinations.
Assuming the digits are not repeated, there are four combinations:123, 124, 134 and 234.
There are 840 4-digit combinations without repeating any digit in the combinations.
To calculate the number of 4-digit combinations using the digits 1, 3, 5, and 7 exactly once each, we can use the permutation formula. There are 4 choices for the first digit, 3 choices for the second digit, 2 choices for the third digit, and 1 choice for the fourth digit. Therefore, the total number of combinations is 4 x 3 x 2 x 1 = 24. So, there are 24 possible 4-digit combinations using the digits 1, 3, 5, and 7 exactly once each.