A 4-digit number can range from 0000 to 9999, which includes all combinations of four digits. Since each digit can be any number from 0 to 9 (10 options), the total number of combinations is calculated as (10^4). Therefore, there are 10,000 different combinations for a 4-digit number.
There are 12C4 4 NUMBER combinations. And that equals 12*11*10*9/(4/3/2/1) = 495 combinations. However, some of these, although 4 number combinations consist of 7 digits eg 1, 10, 11, and 12. Are you really sure you want 4-DIGIT combinations?
10,000 combinations.
If every number can be used as many times as you like, there are 104 = 10000 different combinations. If each number can only be used once, there are 9!/(9 - 4)! = 5040 combinations.
To find the number of combinations of the digits 1, 2, 3, 4, 5, and 6 that form numbers less than 500, we can consider the constraints based on the first digit. If the first digit is 1, 2, or 3, all combinations of the remaining digits can be used. If the first digit is 4, only combinations that result in a two-digit number can be formed. The total combinations can be calculated based on these conditions, but generally, you can form various 1-digit, 2-digit, and 3-digit numbers, totaling around 120 distinct combinations.
There are infinite combinations that can make 3879
This question needs clarificatioh. There are 4 one digit number combinations, 16 two digit combinations, ... 4 raised to the n power for n digit combinations.
the answer is = first 2-digit number by using 48= 28,82 and in 3 digit is=282,228,822,822
To calculate the number of 4-digit combinations you can get from the numbers 1, 2, 2, and 6, we need to consider that the number 2 is repeated. Therefore, the total number of combinations is calculated using the formula for permutations of a multiset, which is 4! / (2!1!1!) = 12. So, there are 12 unique 4-digit combinations that can be formed from the numbers 1, 2, 2, and 6.
There are 210 4 digit combinations and 5040 different 4 digit codes.
There are 12C4 4 NUMBER combinations. And that equals 12*11*10*9/(4/3/2/1) = 495 combinations. However, some of these, although 4 number combinations consist of 7 digits eg 1, 10, 11, and 12. Are you really sure you want 4-DIGIT combinations?
There are 840 4-digit combinations without repeating any digit in the combinations.
10,000 combinations.
If every number can be used as many times as you like, there are 104 = 10000 different combinations. If each number can only be used once, there are 9!/(9 - 4)! = 5040 combinations.
For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.
There are infinite combinations that can make 3879
There is only 1 combination.
To calculate the number of different 4-digit combinations that can be made using numbers 0 through 9, we use the concept of permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the number of options for each digit (10 in this case) and r is the number of digits (4 in this case). Therefore, the number of different 4-digit combinations that can be made using numbers 0 through 9 is 10^4, which equals 10,000 combinations.