If the 6 digits can be repeated, there are 1296 different combinations. If you cannot repeat digits in the combination there are 360 different combinations. * * * * * No. That is the number of PERMUTATIONS, not COMBINATIONS. If you have 6 different digits, you can make only 15 4-digit combinations from them.
There are 12C4 4 NUMBER combinations. And that equals 12*11*10*9/(4/3/2/1) = 495 combinations. However, some of these, although 4 number combinations consist of 7 digits eg 1, 10, 11, and 12. Are you really sure you want 4-DIGIT combinations?
10,000 combinations.
If every number can be used as many times as you like, there are 104 = 10000 different combinations. If each number can only be used once, there are 9!/(9 - 4)! = 5040 combinations.
There are infinite combinations that can make 3879
This question needs clarificatioh. There are 4 one digit number combinations, 16 two digit combinations, ... 4 raised to the n power for n digit combinations.
the answer is = first 2-digit number by using 48= 28,82 and in 3 digit is=282,228,822,822
If the 6 digits can be repeated, there are 1296 different combinations. If you cannot repeat digits in the combination there are 360 different combinations. * * * * * No. That is the number of PERMUTATIONS, not COMBINATIONS. If you have 6 different digits, you can make only 15 4-digit combinations from them.
There are 210 4 digit combinations and 5040 different 4 digit codes.
There are 12C4 4 NUMBER combinations. And that equals 12*11*10*9/(4/3/2/1) = 495 combinations. However, some of these, although 4 number combinations consist of 7 digits eg 1, 10, 11, and 12. Are you really sure you want 4-DIGIT combinations?
There are 840 4-digit combinations without repeating any digit in the combinations.
10,000 combinations.
You would get 4!/2! = 12 combinations.
If every number can be used as many times as you like, there are 104 = 10000 different combinations. If each number can only be used once, there are 9!/(9 - 4)! = 5040 combinations.
For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.For the first digit you have 5 options, whichever you choose for the first digit, you have 4 options for the second digit, etc.; so the number of combinations is 5 x 4 x 3 x 2.
There are infinite combinations that can make 3879
There is only 1 combination.