Dilation
If the coefficients of the linear differential equation are dependent on time, then it is time variant otherwise it is time invariant. E.g: 3 * dx/dt + x = 0 is time invariant 3t * dx/dt + x = 0 is time variant
Getting bigger. Dilation factor of 2, then it would get twice the size.
a point on a graph where if the graph is transformed the point stays the same.
It is a part of a mathematical object which does not change when the object undergoes a transformation.
Properties such as parallelism, ratio of distances, and the measure of angles are preserved under dilation. This means that parallel lines remain parallel after dilation, the ratio of lengths between corresponding points remains constant, and angles maintain their measures before and after dilation.
Well this is my thought depending on where the point of dilation is the coordinates of the give plane is determined. The point of dilation not only is main factor that positions the coordinates, but the scale factor has a huge impact on the placement of the coordinates.
A. Glide reflection b. Orientation of points c. Parallelism of lines d. Areas of polygons
the invarient point is the points of the graph that is unaltered by the transformation. If point (5,0) stays as (5,0) after a transformation than it is a invariant point The above just defines an invariant point... Here's a method for finding them: If the transformation M is represented by a square matrix with n rows and n columns, write the equation; Mx=x Where M is your transformation, and x is a matrix of order nx1 (n rows, 1 column) that consists of unknowns (could be a, b, c, d,.. ). Then just multiply out and you'll get n simultaneous equations, whichever values of a, b, c, d,... satisfy these are the invariant points of the transformation
The Zeuthen-Segre invariant is a numerical invariant of an algebraic surface, denoted by Z(P), where P is a smooth projective surface. It is calculated using the intersection theory of surfaces and is used to distinguish between surfaces in the same deformation class.
Invariants are points that remain the same under certain transformations. You could plug the points into your transformation and note that what does in is the same as what comes out. The details depend on the transformation.
A set function (or setter) is an object mutator. You use it to modify a property of an object such that the object's invariant is maintained. If the object has no invariant, a setter is not required. A get function (or getter) is an object accessor. You use it to obtain a property from an object such that the object's invariant is maintained. If the object has no invariant, you do not need a getter.
Dilation
The procedure for dilation of the kidney?
Dilation
The opposite of dilation in math is contraction
Dilation (or enlargements require a centre of dilation (or enlargement). Since none has been given, no dilation is possible.