They’re the ‘real value’ of a rounded number. Upper and Lower Bounds are concerned with accuracy. Any measurement must be given to a degree of accuracy, e.g. 'to 1 d.p.', or ' 2 s.f.', etc. Once you know the degree to which a measurement has been rounded, you can then find the Upper and Lower Bounds of that measurement. Phrases such as the 'least Upper Bound' and the 'greatest Lower Bound' can be a bit confusing, so remember them like this: the Upper Bound is the biggest possible value the measurement could have been before it was rounded down; while the Lower Bound is the smallest possible value the measurement could have been before it was rounded up.
Chat with our AI personalities
no won noes * * * * * It means that there is an upper and lower bound or limit. There is the lower bound such that you exclude any smaller numbers, and an upper bound such that you exclude bigger numbers. What you do wit hnumbers that are equal to the bounds depends on the nature of the bounds.
Limits give upper and lower bounds for integration. One simple example is in finding an enclosed area. The upper and lower limits form vertical lines which enclose an area between the function and the x-axis and then integration from the lower limit (smaller x boundary) to the upper limit (larger x boundary).
2nd [CATALOG], solve( , enter equation, variable and guess after the bracket, close brackets with " ) ". You can also put lower and upper bounds after the guess.
you do work out the upper and lower quartile
It seems the exact value has not been found yet, although it is sure to be very large. The article at http://en.wikipedia.org/wiki/Skewe's_Number shows some upper and lower bounds; perhaps you can some day do more research into this area, and find better bounds - or even the exact value for this number.