cos(x)-cos(x)sin2(x)=[cos(x)][1-sin2(x)]cos(x)-cos(x)sin2(x)=[cos(x)][cos2(x)]cos(x)-cos(x)sin2(x)=cos3(x)
Prove that tan(x)sin(x) = sec(x)-cos(x) tan(x)sin(x) = [sin(x) / cos (x)] sin(x) = sin2(x) / cos(x) = [1-cos2(x)] / cos(x) = 1/cos(x) - cos2(x)/ cos(x) = sec(x)-cos(x) Q.E.D
(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
Either you mean "cos(x) multiplied by pi", (i.e pi*cos(x)) or "cos(pi)" (i.e cosine of pi), but it is unclear which you mean from the question. Please clarify.
cos(x)-cos(x)sin2(x)=[cos(x)][1-sin2(x)]cos(x)-cos(x)sin2(x)=[cos(x)][cos2(x)]cos(x)-cos(x)sin2(x)=cos3(x)
No. Cos squared x is not the same as cos x squared. Cos squared x means cos (x) times cos (x) Cos x squared means cos (x squared)
2
sec x = 1/cos x sec x cos x = [1/cos x] [cos x] = 1
cos 2x = cos2 x - sin2 x = 2 cos2 x - 1; whence, cos 2x / cos x = 2 cos x - (1 / cos x) = 2 cos x - sec x.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
Can you please claify if you mean x=y^2/ pi*cos(x) , or x=y^2/cos(pi), since they are very different sums.
Prove that tan(x)sin(x) = sec(x)-cos(x) tan(x)sin(x) = [sin(x) / cos (x)] sin(x) = sin2(x) / cos(x) = [1-cos2(x)] / cos(x) = 1/cos(x) - cos2(x)/ cos(x) = sec(x)-cos(x) Q.E.D
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
Either you mean "cos(x) multiplied by pi", (i.e pi*cos(x)) or "cos(pi)" (i.e cosine of pi), but it is unclear which you mean from the question. Please clarify.