2/cos(a) = 2 sec(a)
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
No, the equation ( \cos 2x = 2 \cos x ) is not generally true. The correct identity for ( \cos 2x ) is ( \cos 2x = 2 \cos^2 x - 1 ), which shows that it is related to the square of the cosine of ( x ) rather than just ( 2 \cos x ). Thus, without additional context or constraints, the statement is incorrect.
11pi/12 = pi - pi/12 cos(11pi/12) = cos(pi - pi/12) cos(a-b) = cos(a)cos(b)+sin(a)sin(b) cos(pi -pi/12) = cos(pi)cos(pi/12) + sin(pi)sin(pi/12) sin(pi)=0 cos(pi)=-1 Therefore, cos(pi -pi/12) = -cos(pi/12) pi/12=pi/3 -pi/4 cos(pi/12) = cos(pi/3 - pi/4) = cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) cos(pi/3)=1/2 sin(pi/3)=sqrt(3)/2 cos(pi/4)= sqrt(2)/2 sin(pi/4) = sqrt(2)/2 cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) = (1/2)(sqrt(2)/2 ) + (sqrt(3)/2)( sqrt(2)/2) = sqrt(2)/4 + sqrt(6) /4 = [sqrt(2)+sqrt(6)] /4 Therefore, cos(pi/12) = (sqrt(2)+sqrt(6))/4 -cos(pi/12) = -(sqrt(2)+sqrt(6))/4 cos(11pi/12) = -(sqrt(2)+sqrt(6))/4
I'm not really sure what you mean by "the solution", but that equation cos = sec - sintan does simplify down to sin^2 + cos^2 = 1 which so happens to be an identity. I'm not sure if that's what you're looking for, but if it is, here are the steps in simplifying it. 1. Convert sec to 1/cos 2. Convert tan into sin/cos and multiply it by sin sintan = sin(sin/cos) = (sin^2)/cos You then have cos = 1/cos - (sin^2/cos) 3. Multiply everything by cos cos^2 = 1 - sin^2 4. And finally, send the sin^2 over to the left side by adding it (since it is being subracted on the right) You should see this sin^2 + cos^2 = 1 which is an identity.
cos(x^2)=cos(x times x)
Cos(2A) = Cos(A + A) Double Angle Indentity Cos(A+A) = Cos(A)Cos(A) - Sin(A)Sin(A) => Cos^(2)[A] - SIn^(2)[A] => Cos^(2)[A] - (1 - Cos^(2)[A] => 2Cos^(2)[A] - 1
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
cos 2x = cos2 x - sin2 x = 2 cos2 x - 1; whence, cos 2x / cos x = 2 cos x - (1 / cos x) = 2 cos x - sec x.
2
sin 2θ = 2(sin θ)(cos θ) cos 2θ = (cos θ)2 - (sin θ)2 cos 2θ = 2(cos θ)2 - 1 cos 2θ = 1 - 2(sin θ)2 tan 2θ = 2(tan θ)/[1 - (tan θ)2] sin θ/2 = ±√[(1 - (cos θ))/2] cos θ/2 = ±√[(1 + (cos θ))/2] tan θ/2 = ±√[(1 - (cos θ))/(1 + (cos θ))] ; cos θ ≠ -1 tan θ/2 = [1 - (cos θ)]/(sin θ) tan θ/2 = (sin θ)/[1 + (cos θ)]
The expression ( \cos(2x) \cdot \cos(x) ) can be simplified using the double angle identity for cosine. Specifically, ( \cos(2x) = 2\cos^2(x) - 1 ). Thus, multiplying gives ( \cos(2x) \cdot \cos(x) = (2\cos^2(x) - 1) \cdot \cos(x) = 2\cos^3(x) - \cos(x) ).
Provided that any denominator is non-zero, sin = sqrt(1 - cos^2)tan = sqrt(1 - cos^2)/cos sec = 1/cos cosec = 1/sqrt(1 - cos^2) cot = cos/sqrt(1 - cos^2)
cos they want 2 cos they want 2 cos they want 2
No, the equation ( \cos 2x = 2 \cos x ) is not generally true. The correct identity for ( \cos 2x ) is ( \cos 2x = 2 \cos^2 x - 1 ), which shows that it is related to the square of the cosine of ( x ) rather than just ( 2 \cos x ). Thus, without additional context or constraints, the statement is incorrect.
2
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x