None because without an equality sign it is not an equation but it can be simplified to 3p^2 +6p
Points: (p, q) and (7p, 3q) Midpoint: (4p, 2q) Slope: q/3p Perpendicular slope: -3p/q Perpendicular bisector equation:- => y-2q = -3p/q(x-4p) => qy-2q^2 = -3p(x-4p) => qy-2q^2 = -3px+12p^2 => qy = -3px+12p^2+2q^2 In its general form: 3px+qy-12p^2-2q^2 = 0
The expression can be simplified to: -8p--29
The expression (3p^4 - 2p) cannot be simplified further without knowing specific values for (p). However, it can be factored as (p(3p^3 - 2)), which highlights (p) as a common factor.
In its general form it works out as: 3px+qy-12p2-2q2 = 0Improved Answer:-Points:(p, q) and (7p, 3q)Slope: q/3pPerpendicular slope: -3p/qMidpoint: (4p, 2q)Equation: y-2q = -3p/q(x-4p) => yq = -3px+12p2+2q2Perpendicular bisector equation in its general form: 3px+qy-12x2-2q2 = 0
They are three terms of an expression that can be simplified to: 3p -31
They are three terms of an expression that can be simplified to: 3p -31
Oh, dude, it's like this: if you have p plus q, you just add the two together. And then, if you have 2p, you're basically doubling p. So, technically, the answer is p + q and 2p. Hope that clears things up for ya!
None because without an equality sign it is not an equation but it can be simplified to 3p^2 +6p
To simplify the expression 12p + 19q + p - 5q - 3p, we first combine like terms. Combining the p terms, we have 12p + p - 3p, which simplifies to 10p. Combining the q terms, we have 19q - 5q, which simplifies to 14q. Therefore, the simplified expression is 10p + 14q.
This expression when simplified comes to: 0
It is: 1.50p+2.50p+3p = 7p when simplified
Points: (p, q) and (7p, 3q) Midpoint: (4p, 2q) Slope: q/3p Perpendicular slope: -3p/q Perpendicular bisector equation:- => y-2q = -3p/q(x-4p) => qy-2q^2 = -3p(x-4p) => qy-2q^2 = -3px+12p^2 => qy = -3px+12p^2+2q^2 In its general form: 3px+qy-12p^2-2q^2 = 0
p/14 + q/3 = (3p + 14q)/ 42
The expression can be simplified to: -8p--29
3p-pq 2pr factorized = 1
First find the midpoint the slope and the perpendicular slope of the points of (p, q) and (7p, 3q) Midpoint = (7p+p)/2 and (3q+q)/2 = (4p, 2q) Slope = (3q-q)/(7p-p) = 2q/6p = q/3p Slope of the perpendicular is the negative reciprocal of q/3p which is -3p/q From the above information form an equation for the perpendicular bisector using the straight line formula of y-y1 = m(x-x1) y-2q = -3p/q(x-4p) y-2q = -3px/q+12p2/q y = -3px/q+12p2/q+2q Multiply all terms by q and the perpendicular bisector equation can then be expressed in the form of:- 3px+qy-12p2-2q2 = 0