2x = x2 + 4x - 3 x2 + 2x - 3 = 0 (x - 1)(x - 2) = 0
6
(x3 + 3x2 - 2x + 7)/(x + 1) = x2 + 2x - 4 + 11/(x + 1)(multiply x + 1 by x2, and subtract the product from the dividend)1. x2(x + 1) = x3 + x22. (x3 + 3x2 - 2x + 7) - (x3 + x2) = x3 + 3x2 - 2x + 7 - x3 - x2 = 2x2 - 2x + 7(multiply x + 1 by 2x, and subtract the product from 2x2 - 2x + 7)1. 2x(x + 1) = 2x2 + 2x2. (2x2 - 2x + 7) - (2x2 + 2x) = 2x2 - 2x + 7 - 2x2 - 2x = -4x + 7(multiply x + 1 by -4, and subtract the product from -4x + 7)1. -4(x + 1) = -4x - 42. -4x + 7 - (-4x - 4) = -4x + 7 + 4x + 4 = 11(remainder)
4
Say you have y=x2 -4x +4 y=(x-2)(x-2) x*x=x2 x*-2=-2x -2*x=2x -2*-2=4 x2 -4x +4
2x = x2 + 4x - 3 x2 + 2x - 3 = 0 (x - 1)(x - 2) = 0
-x2+2x
6
(x2+3x-4) (x-4)
2
(x3 + 3x2 - 2x + 7)/(x + 1) = x2 + 2x - 4 + 11/(x + 1)(multiply x + 1 by x2, and subtract the product from the dividend)1. x2(x + 1) = x3 + x22. (x3 + 3x2 - 2x + 7) - (x3 + x2) = x3 + 3x2 - 2x + 7 - x3 - x2 = 2x2 - 2x + 7(multiply x + 1 by 2x, and subtract the product from 2x2 - 2x + 7)1. 2x(x + 1) = 2x2 + 2x2. (2x2 - 2x + 7) - (2x2 + 2x) = 2x2 - 2x + 7 - 2x2 - 2x = -4x + 7(multiply x + 1 by -4, and subtract the product from -4x + 7)1. -4(x + 1) = -4x - 42. -4x + 7 - (-4x - 4) = -4x + 7 + 4x + 4 = 11(remainder)
4
Say you have y=x2 -4x +4 y=(x-2)(x-2) x*x=x2 x*-2=-2x -2*x=2x -2*-2=4 x2 -4x +4
It is: 4x -34x^2 -21 simplified
To find the extreme value of the parabola y = x2 - 4x + 3 ...(1) Take the derivative of the equation.y = x2 - 4x + 3y' = 2x - 4(2) Set the derivative = 0 and solve for x.y' = 2x - 40 = 2x - 42x = 4x = 4/2x = 2(3) Plug this x value back into the original equation to find the associated y coordinate.x = 2y = x2 - 4x + 3y = (2)2 - 4(2) + 3y = 4 - 8 + 3y = -1So the vertex is at (2, -1).
X2 + 2X - 14 = 6X2 + 2X - 8 = 0what two products of - 8 = 2 ?(X +4)(X - 2)=========X = - 4X = 2
4x2 + 8x + 4 = 4 (x2 + 2x + 1) = 4 (x + 1)2