y = c ekxpassing through (1, 180) and (3, 20).(Note: All of the 'log' in the following are natural logs.)log(y) = log(c) + k log(x)Log(180) = log(c) + k log(1) = log(c)c = 180log(20) = log(180) + k log(3)log(20) - log(180) = k log(3)k = log(20/180) / log(3) = - log(9) / log(3) = -2y = 180 e-2xIn checking my work, I find that this doesn't work at all.Oh woe! Where have I failed ?--------------------------------------------Here's what I did:y=Cekx which passes through the points (1,180) & (3,20)(1) Substitute the values of x & y to create two equations:180 = Cek & 20 = Ce3k(2) Rearrange in terms of the constant, C:C=180/ek & C=20/e3k(3) Since both sets of points satisfy the exponential function, the constant will be the same so:180/ek = 20/e3k(4) Now rearrange and solve for k:180e3k = 20ek9 = e(k-3k)ln(9) = ln(e-2k)ln(9) = -2kk = -ln(9)/2 which is approx. -1.09861(5) Now substitute k into one of the equations to solve for C:C =180/e(-1.09861)C = 539.9987 or rounded to 540So the exponential function that includeds the points (1,180) & (3,20) can be approximated as:y = 540ekx , where k = -1.09861
p;kp;k;ko;jk;
The graph of log base b(x-h)+k has the following characteristics. the line x = h is a vertical asymptote; the domain is x>h, and the range is all real numbers; if b>1, the graph moves up to the right. of 0>b>1, the the graph moves down to the right.
log(2) + log(4) = log(2x)log(2 times 4) = log(2x)2 times 4 = 2 times 'x'x = 4
how do i log in
k=log4 91.8 4^k=91.8 -- b/c of log rules-- log 4^k=log 91.8 -- b/c of log rules-- k*log 4=log91.8 --> divide by log 4 k=log 91.8/log 4 k= 3.260
If in the real number universe, first k is to be >0, y=kx = exlog(k) the antiderivative of eax is eax/a so the antiderivative of Y is exlog(k) / log(k) = kx /log(k)
You could just use the binomial theorem. Step through rows, n, and entries, k, and compute the Pascal's triangle value as n!/(k!*(n-k)!) You'll actually have better luck if you use the natural log of a factorial, then you can use laws of exponents to get: exp(log(n!/k!/(n-k)!)) = exp(log(n!)-log(k!)-log((n-k)!)) = exp(logfact(n)-logfact(k)-logfact(n-k)) which won't run into the integer overflow problems that a plain factorial function would have. To fill up a logfact array, something like this might work: while(i<maxn) logfact(i)=logfact(i-1)+log(i) i=i+1 Wend Be careful to initialize correctly, and watch your conversion between integers and doubles (probably have to do some rounding to your final answers).
y = c ekxpassing through (1, 180) and (3, 20).(Note: All of the 'log' in the following are natural logs.)log(y) = log(c) + k log(x)Log(180) = log(c) + k log(1) = log(c)c = 180log(20) = log(180) + k log(3)log(20) - log(180) = k log(3)k = log(20/180) / log(3) = - log(9) / log(3) = -2y = 180 e-2xIn checking my work, I find that this doesn't work at all.Oh woe! Where have I failed ?--------------------------------------------Here's what I did:y=Cekx which passes through the points (1,180) & (3,20)(1) Substitute the values of x & y to create two equations:180 = Cek & 20 = Ce3k(2) Rearrange in terms of the constant, C:C=180/ek & C=20/e3k(3) Since both sets of points satisfy the exponential function, the constant will be the same so:180/ek = 20/e3k(4) Now rearrange and solve for k:180e3k = 20ek9 = e(k-3k)ln(9) = ln(e-2k)ln(9) = -2kk = -ln(9)/2 which is approx. -1.09861(5) Now substitute k into one of the equations to solve for C:C =180/e(-1.09861)C = 539.9987 or rounded to 540So the exponential function that includeds the points (1,180) & (3,20) can be approximated as:y = 540ekx , where k = -1.09861
emagrants
p;kp;k;ko;jk;
The graph of log base b(x-h)+k has the following characteristics. the line x = h is a vertical asymptote; the domain is x>h, and the range is all real numbers; if b>1, the graph moves up to the right. of 0>b>1, the the graph moves down to the right.
gt is the pagal log pagal ho tm log me khe raho hu k zoroastrianims ki holy book kya hai
It is measured by means of wave motion and by a logarithmic function of the form R = k log I.
roblox studio in workspace roblox studio is in program list in roblox
If the range of numbers is 1....n and the size of numbers is k(small no.) then the time complexity will be theta n log..
The specific growth rate constant, often denoted as μ, is a measure of how fast a population of microorganisms grows exponentially under ideal conditions. It is used to quantify the rate of cell growth or biomass production in biological systems. The specific growth rate constant is an important parameter in microbiology, biotechnology, and other fields related to cell or microbial growth.