In trigonometry, theta is a symbol commonly used to represent an unknown angle in the same way you might use x to label an unknown side or an unknown number in general. Theta looks like this: θ
The expression (\cos^2(90^\circ - \theta)) can be simplified using the co-function identity, which states that (\cos(90^\circ - \theta) = \sin(\theta)). Therefore, (\cos^2(90^\circ - \theta) = \sin^2(\theta)). This means that (\cos^2(90^\circ - \theta)) is equal to the square of the sine of (\theta).
The identity for tan(theta) is sin(theta)/cos(theta).
Zero. Anything minus itself is zero.
The question contains an expression but not an equation. An expression cannot be solved.
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
Cos theta squared
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
The expression (\cos^2(90^\circ - \theta)) can be simplified using the co-function identity, which states that (\cos(90^\circ - \theta) = \sin(\theta)). Therefore, (\cos^2(90^\circ - \theta) = \sin^2(\theta)). This means that (\cos^2(90^\circ - \theta)) is equal to the square of the sine of (\theta).
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
(Sin theta + cos theta)^n= sin n theta + cos n theta
The identity for tan(theta) is sin(theta)/cos(theta).
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
It is cotangent(theta).
Zero. Anything minus itself is zero.
The question contains an expression but not an equation. An expression cannot be solved.
You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.