The answer will depend on x, and whether x is measured in degrees or radians.
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
1
No.
The answer depends on x, on whether x is measured in degrees or radians and on whether the question is about sin(x) + 2 or sin(x + 2).
2*sin^2(x) - 5*sin(x) + 2 = 0 is a quadratic equation in sin(x).therefore,{2*sin(x) - 1}*{sin(x) - 2)} = 0=> sin(x) = 1/2 or sin(x) = 2The second solution is rejected since sin(x) cannot exceed 1.The principal solution is x = arcsin(1/2) = pi/6 radians. Additional or alternative solutions will depend on the domain for x - which has not been given.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
I assume the expression is cot^2 x / ( csc^2 x - csc x) express it in terms of sin x and cos x: =(cos^2 x / sin^2 x) / (1/sin^2 x - 1/sin x) =(cos^2 x / sin^2 x) / [(1 - sin x)/sin^2 x] =cos^2 x / (1 - sin x) = (1 - sin^2 x) / (1 - sin x) = (1 + sin x)(1 - sin x) / (1 - sin x) = 1 + sin x
If f(x) = sin^2(x) then f'(x) = 2 sin(x) d/dx(sin(x)) = 2 sin(x) cos(x) = sin(2x)
2
Tan(x) = Sin(x) / Cos(x) Hence Sin(x) / Cos(x) = Cos(x) Sin(x) = Cos^(2)[x] Sin(x) = 1 - Sin^(2)[x] Sin^(2)[x] + Sin(x) - 1 = 0 It is now in Quadratic form to solve for Sin(x) Sin(x) = { -1 +/-sqrt[1^(2) - 4(1)(-1)]} / 2(1) Sin(x) = { -1 +/-sqrt[5[} / 2 Sin(x) = {-1 +/-2.236067978... ] / 2 Sin(x) = -3.236067978...] / 2 Sin(x) = -1.61803.... ( This is unresolved as Sine values can only range from '1' to '-1') & Sin(x) = 1.236067978... / 2 Sin(x) = 0.618033989... x = Sin^(-1) [ 0.618033989...] x = 38.17270765.... degrees.
y = (x^2)(sin x)(2x)(cos x) - 2sin xy' = [[(x^2)(sin x)][(2x)(cos x)]]' - (2sin x)'y' = [[(x^2)(sin x)]'[(2x)(cos x)] + [(2x)(cos x)]'[(x^2)(sin x)]]- (2sin x)'y' = [[(x^2)'(sin x) + (sin x)'(x^2)][(2x)(cos x)] + [(2x)'(cos x) + (cos x)'(2x)][(x^2)(sin x)] ] - 2(cos x)y' = [[(2x)(sin x )+ (cos x)(x^2)][(2x)(cos x)] + [2cos x - (sin x)(2x)][(x^2)(sin x)]] - 2(cos x)y' = (4x^2)(sin x cos x) + (2x^3)(cos x)^2 + (2x^2)(sin x cos x) - (2x^3)(sin x)^2 - 2cos xy' = (6x^2)(sin x cos x) + (2x^3)(cos x)^2 - (2x^3)(sin x)^2 - 2cos x (if you want, you can stop here, or you can continue)y' = (3x^2)(2sin x cos x) + (2x^3)[(cos x)^2 - (sin x)^2] - 2cos xy' = (3x^2)(sin 2x) + (2x^3)(cos 2x) - 2 cos xy' = (2x^3)(cos 2x) + (3x^2)(sin 2x) - 2 cos x
You need to know the trigonometric formulae for sin and cos of compound angles. sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y) and cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y) Using these, y = x implies that sin(2x) = sin(x+x) = 2*sin(x)cos(x) and cos(2x) = cos(x+x) = cos^2(x) - sin^2(x) Next, the triple angle formulae are: sin(3x) = sin(2x + x) = 3*sin(x) - 4*sin^3(x) and cos(3x) = 4*cos^3(x) - 3*cos(x) Then the left hand side = 2*[3*sin(x) - 4*sin^3(x)]/sin(x) + 2*[4*cos^3(x) - 3*cos(x)]/cos(x) = 6 - 8*sin^2(x) + 8cos^2(x) - 6 = 8*[cos^2(x) - sin^2(x)] = 8*cos(2x) = right hand side.
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
1
No.
The answer depends on x, on whether x is measured in degrees or radians and on whether the question is about sin(x) + 2 or sin(x + 2).
The answer depends on x, on whether x is measured in degrees or radians and on whether the question is about sin(x) - 2 or sin(x - 2).