If you mean: +3 +1 -1 -3 then it is -5
That depends what the pattern of the sequence is.
0.16
"The recursive form is very useful when there aren't too many terms in the sequence. For instance, it would be fairly easy to find the 5th term of a sequence recursively, but the closed form might be better for the 100th term. On the other hand, finding the closed form can be very difficult, depending on the sequence. With computers or graphing calculators, the 100th term can be found quickly recursively."
Nth number in an arithmetic series equals 'a + nd', where 'a' is the first number, 'n' signifies the Nth number and d is the amount by which each term in the series is incremented. For the 5th term it would be a + 5d
To find the first three terms of a sequence where the fifth term is 162, we can assume the sequence follows a specific pattern, such as an arithmetic sequence. For example, if we let the first term be ( a ) and the common difference be ( d ), the fifth term can be expressed as ( a + 4d = 162 ). By choosing ( a = 82 ) and ( d = 20 ), the first three terms would be 82, 102, and 122. However, many sequences could satisfy the condition, so the terms can vary depending on the assumed pattern.
That depends what the pattern of the sequence is.
16
0.16
As you are taking 3 away each time, the 5th term will be -5.
Ok, take the formula dn+(a-d) this is just when having a sequence with a common difference dn+(a-d) when d=common difference, a=the 1st term, n=the nth term - you have the sequence 2, 4, 6, 8... and you want to find the nth term therefore: dn+(a-d) 2n+(2-2) 2n Let's assume you want to find the 5th term (in this case, the following number in the sequence) 2(5) = 10 (so the fifth term is 10)
"The recursive form is very useful when there aren't too many terms in the sequence. For instance, it would be fairly easy to find the 5th term of a sequence recursively, but the closed form might be better for the 100th term. On the other hand, finding the closed form can be very difficult, depending on the sequence. With computers or graphing calculators, the 100th term can be found quickly recursively."
Nth number in an arithmetic series equals 'a + nd', where 'a' is the first number, 'n' signifies the Nth number and d is the amount by which each term in the series is incremented. For the 5th term it would be a + 5d
56
Well, darling, the nth term for this sequence is 8n + 7. You just add 8 to each term to get the next one, simple as that. So, if you want the 100th term, just plug in n=100 and you'll get 807. Easy peasy lemon squeezy!
To find the first three terms of a sequence where the fifth term is 162, we can assume the sequence follows a specific pattern, such as an arithmetic sequence. For example, if we let the first term be ( a ) and the common difference be ( d ), the fifth term can be expressed as ( a + 4d = 162 ). By choosing ( a = 82 ) and ( d = 20 ), the first three terms would be 82, 102, and 122. However, many sequences could satisfy the condition, so the terms can vary depending on the assumed pattern.
If the sequence is 1,4,10,19,31,...... Then the sequence formula is, 1 + 3/2n(n - 1) Confirm 5th term....1 + (3/2 x 5 x 4) = 1 + 30 = 31 the 6th (next) term = 1 + (3/2 x 6 x 5) = 1 + 45 = 46
what is the bleeding sequence on rear brakes for a 2001 Honda prelude