answersLogoWhite

0


Best Answer

Degree 7

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the degree of the given polynomial 5x3y2 plus 9x3y4?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How do you rewrite an polynomial and standard form?

A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.


How do you determine the degrees of a given polynomial?

The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.


The polynomial given below has rootss?

You forgot to copy the polynomial. However, the Fundamental Theorem of Algebra states that every polynomial has at least one root, if complex roots are allowed. If a polynomial has only real coefficients, and it it of odd degree, it will also have at least one real solution.


What is the missing number 7 16 8 27 9?

The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.


What number comes next in this sequence 1 3 11 47 239 give answer with explanation?

821. The explantion is that they can be generated by the polynomial below: the only polynomial of degree 4. There are infinitely many other possibilities and given any "next number" it is possible to find a polynomial of degree 5 that will generate the 5 given numbers and the specified "next". Un = (53n4 - 486n3 + 1627n2 - 2250n + 1068)/12 for n = 1, 2, 3, ...

Related questions

How do you rewrite an polynomial and standard form?

A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.


How do you determine the degrees of a given polynomial?

The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.


What is the degree of the polynomial 2st4 plus s2t2 - 9s5t plus 21?

2st4 + s2t2 - 9s5t + 21 The degree of a polynomial with more than one variable is the largest sum of the powers in any single term. So the degree of the given polynomial is 6 (-9s5t1; 5 + 1).


What is the Greatest Common Factor for the given polynomial?

Since no polynomial was given, no answer will be given.


The polynomial given below has rootss?

You forgot to copy the polynomial. However, the Fundamental Theorem of Algebra states that every polynomial has at least one root, if complex roots are allowed. If a polynomial has only real coefficients, and it it of odd degree, it will also have at least one real solution.


What is the missing number 7 16 8 27 9?

The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.


What is next number is series 298 209 129 58 - 4?

The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.


What number comes next in this sequence 1 3 11 47 239 give answer with explanation?

821. The explantion is that they can be generated by the polynomial below: the only polynomial of degree 4. There are infinitely many other possibilities and given any "next number" it is possible to find a polynomial of degree 5 that will generate the 5 given numbers and the specified "next". Un = (53n4 - 486n3 + 1627n2 - 2250n + 1068)/12 for n = 1, 2, 3, ...


Which number will follow in the series given 32 55 165 1848?

Given any number it is easy to find a polynomial of degree 4 which will generate the above numbers and the additional one as the first five in a sequence. There are also non-polynomial functions possible. So the short answer is ANY number at all. The best that can be done with a polynomial of degree 3 is Un = (1486n3 - 8655n2 + 15701n - 8340)/6 for n = 1, 2, 3, ... and accordingly, U5 = 6590.


What is the difference in evaluating a polynomial and solving a polynomial?

Evaluating a polynomial is finding the value of the polynomial for a given value of the variable, usually denoted by x. Solving a polynomial equation is finding the value of the variable, x, for which the polynomial equation is true.


Can there be two patterns in a sequence?

Yes, there can be infinitely many. Given a sequence of n numbers, it is always possible to fit a polynomial of degree (n-1) to it. That polynomial is one posible pattern.Then suppose the sequence is extended by adding an (n+1)thnumber = k. You now have a sequence of n+1 numbers and there is a polynomial of degree n that will fit it. For each of an infinite number of values of k, there will be a different polynomial of degree n. Next add another number, l. There will now be an infinite number of polynomials of degree n+1. And this process can continue without end.And these are only polynomial functions. You can have other rules - for example, sums of sines and cosines (see Fourier transformations if you are really keen and able).


What number comes after 3 -6 12 4 20?

Given any number, it is possible to find a polynomial of degree 5 that will generate the above sequence of numbers and the additional sixth. There are also non-polynomial rules possible. The polynomial of degree 4 that will generate this sequence is Un = (103n4 - 1242n3 + 5201n2 - 8670n + 4680)/24 for n = 1, 2, 3, ... and, according to this rule, the next number is 213.