A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.
The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.
You forgot to copy the polynomial. However, the Fundamental Theorem of Algebra states that every polynomial has at least one root, if complex roots are allowed. If a polynomial has only real coefficients, and it it of odd degree, it will also have at least one real solution.
The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.
821. The explantion is that they can be generated by the polynomial below: the only polynomial of degree 4. There are infinitely many other possibilities and given any "next number" it is possible to find a polynomial of degree 5 that will generate the 5 given numbers and the specified "next". Un = (53n4 - 486n3 + 1627n2 - 2250n + 1068)/12 for n = 1, 2, 3, ...
A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.
The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.
2st4 + s2t2 - 9s5t + 21 The degree of a polynomial with more than one variable is the largest sum of the powers in any single term. So the degree of the given polynomial is 6 (-9s5t1; 5 + 1).
Since no polynomial was given, no answer will be given.
You forgot to copy the polynomial. However, the Fundamental Theorem of Algebra states that every polynomial has at least one root, if complex roots are allowed. If a polynomial has only real coefficients, and it it of odd degree, it will also have at least one real solution.
The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.
The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.The answer can be any number that you like: it is always possible to find a polynomial of order 5 to fit the given numbers and any other number.The lowest degree polynomial that will fit the given numbers is the quadraticUn = (9n2 - 205n + 792)/2 for n = 1, 2, 3, .. . and that gives the next number as -57.
821. The explantion is that they can be generated by the polynomial below: the only polynomial of degree 4. There are infinitely many other possibilities and given any "next number" it is possible to find a polynomial of degree 5 that will generate the 5 given numbers and the specified "next". Un = (53n4 - 486n3 + 1627n2 - 2250n + 1068)/12 for n = 1, 2, 3, ...
Given any number it is easy to find a polynomial of degree 4 which will generate the above numbers and the additional one as the first five in a sequence. There are also non-polynomial functions possible. So the short answer is ANY number at all. The best that can be done with a polynomial of degree 3 is Un = (1486n3 - 8655n2 + 15701n - 8340)/6 for n = 1, 2, 3, ... and accordingly, U5 = 6590.
Evaluating a polynomial is finding the value of the polynomial for a given value of the variable, usually denoted by x. Solving a polynomial equation is finding the value of the variable, x, for which the polynomial equation is true.
Yes, there can be infinitely many. Given a sequence of n numbers, it is always possible to fit a polynomial of degree (n-1) to it. That polynomial is one posible pattern.Then suppose the sequence is extended by adding an (n+1)thnumber = k. You now have a sequence of n+1 numbers and there is a polynomial of degree n that will fit it. For each of an infinite number of values of k, there will be a different polynomial of degree n. Next add another number, l. There will now be an infinite number of polynomials of degree n+1. And this process can continue without end.And these are only polynomial functions. You can have other rules - for example, sums of sines and cosines (see Fourier transformations if you are really keen and able).
Given any number, it is possible to find a polynomial of degree 5 that will generate the above sequence of numbers and the additional sixth. There are also non-polynomial rules possible. The polynomial of degree 4 that will generate this sequence is Un = (103n4 - 1242n3 + 5201n2 - 8670n + 4680)/24 for n = 1, 2, 3, ... and, according to this rule, the next number is 213.