sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
1. Anything divided by itself always equals 1.
(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.
(sin x + cos x) / cosx = sin x / cos x + cosx / cos x = tan x + 1
The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x
1. Anything divided by itself always equals 1.
cos 2x = cos2 x - sin2 x = 2 cos2 x - 1; whence, cos 2x / cos x = 2 cos x - (1 / cos x) = 2 cos x - sec x.
(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.
sin2x / (1-cos x) = (1-cos2x) / (1-cos x) = (1-cos x)(1+cos x) / (1-cos x) = (1+cos x) sin2x=1-cos2x as sin2x+cos2x=1 1-cos2x = (1-cos x)(1+cos x) as a2-b2=(a-b)(a+b)
(sin x + cos x) / cosx = sin x / cos x + cosx / cos x = tan x + 1
The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?
It helps to convert this kind of equation into one that has only sines and cosines, by using the basic definitions of the other functions in terms of sines and cosines. sin x / (1 - cos x) = csc x + cot x sin x / (1 - cos x) = 1 / sin x + cos x / sin x Now it should be easy to do some simplifications: sin x / (1 - cos x) = (1 + cos x) / sin x Multiply both sides by 1 + cos x: sin x (1 + cos) / ((1 - cos x)(1 + cos x)) = (1 + cos x)2 / sin x sin x (1 + cos) / (1 - cos2x) = (1 + cos x)2 / sin x sin x (1 + cos) / sin2x = (1 + cos x)2 / sin x sin x (1 + cos x) / sin x = (1 + cos x)2 1 + cos x = (1 + cos x)2 1 = 1 + cos x cos x = 0 So, cos x can be pi/2, 3 pi / 2, etc. In some of the simplifications, I divided by a factor that might be equal to zero; this has to be considered separately. For example, what if sin x = 0? Check whether this is a solution to the original equation.
(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True
22
cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x
tan^2(x) Proof: cos^2(x)+sin^2(x)=1 (Modified Pythagorean theorem) sin^2(x)=1-cos^2(x) (Property of subtraction) cos^2(x)-1/cos^2(x)=? sin^2(x)/cos^2(x)=? (Property of substitution) sin(x)/cos(x) * sin(x)/cos(x) = tan(x) * tan(x) (Definition of tanget) = tan^2(x)