Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x
There is no sensible or useful simplification.
(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.
"Derivative of"
(1 - csc2x)/(sinx*cotx) = -cot2x/sinxcotx = -cotx/sinx = -(cosx/sinx)/sinx = -cosx/sin2x = -cosx/(1-cos2x) = cosx/(cos2x - 1)
Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
- ln (cscx + cotx) + C You use u substitution.
Do you mean? d/dx(cotX) = - csc2X --------------
There is no sensible or useful simplification.
(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.
"Derivative of"
(1 - csc2x)/(sinx*cotx) = -cot2x/sinxcotx = -cotx/sinx = -(cosx/sinx)/sinx = -cosx/sin2x = -cosx/(1-cos2x) = cosx/(cos2x - 1)
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
Velocity is the derivative of position.Velocity is the derivative of position.Velocity is the derivative of position.Velocity is the derivative of position.
A dot A = A2 do a derivative of both sides derivative (A) dot A + A dot derivative(A) =0 2(derivative (A) dot A)=0 (derivative (A) dot A)=0 A * derivative (A) * cos (theta) =0 => theta =90 A and derivative (A) are perpendicular