CosX = Sin2x
Using Trog. Identityt
CosX = 2SinXCosX
CosX cancels down to '1'
Hence
CosX/CosX = 2 SinX
1 = 2SinX
SinX = 1/2 = 0.5
SinX = 0.5
X = Sin^(-1) 0,5
X = 30 degrees = pi/6 radians
Use this identity sin2x+cos2x=1 sin2x=1-cos2x so sin2x/(1-cosx) =(1-cos2x)/(1-cosx) =(1-cosx)(1+cosx)/(1-cosx) =1+cosx
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
sin2x because sin2x + cos2x = 1
There is no "exact" solution. This type of equation falls into the category of transcendental equations, which generally don't have exact solution except in special cases. The approximate solution, however, is roughly 0.739085
X=60 how did you get that? could you show all the steps?
Sin2x = radical 2
to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))
Use this identity sin2x+cos2x=1 sin2x=1-cos2x so sin2x/(1-cosx) =(1-cos2x)/(1-cosx) =(1-cosx)(1+cosx)/(1-cosx) =1+cosx
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
sin2x because sin2x + cos2x = 1
There is no "exact" solution. This type of equation falls into the category of transcendental equations, which generally don't have exact solution except in special cases. The approximate solution, however, is roughly 0.739085
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
X=60 how did you get that? could you show all the steps?
No; sin2x = 2 cosx sinx
(1 + tanx)/sinxMultiply by sinx/sinxsinx + tanxsinxDivide by sin2x (1/sin2x) = cscxcscx + tan(x)csc(x)tanx = sinx/cosx and cscx = 1/sinxcscx + (sinx/cosx)(1/sinx)sinx cancels outcscx + 1/cosx1/cosx = secxcscx + secx
0
tanx=2cscx sinx/cosx=2/sinx sin2x/cosx=2 sin2x=2cosx 1-cos2x=2cosx 0=cos2x+2cosx-1 Quadratic formula: cosx=(-2±√(2^2+4))/2 cosx=(-2±√8)/2 cosx=(-2±2√2)/2 cosx=-1±√2 cosx=approximately -2.41 or approximately 0.41. Since the range of the cosine function is [-1,1], only approx. 0.41 works. So: cosx= approx. 0.41 Need calculator now (I went as far as I could without one!) x=approx 1.148