The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
The answer will depend on whether the rotation is clockwise or counterclockwise.
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
To find the image of the point (3, 5) after a rotation of -270 degrees (which is equivalent to a 90-degree rotation clockwise), you can use the rotation formula. The new coordinates will be (y, -x), resulting in the point (5, -3). Thus, the image of the point (3, 5) after a -270-degree rotation is (5, -3).
To find the image of the point (4, 3) after a -90-degree rotation (which is equivalent to a 90-degree clockwise rotation), you can use the rotation formula: (x', y') = (y, -x). Applying this to the point (4, 3), the new coordinates become (3, -4). Therefore, the image of the point (4, 3) after a -90-degree rotation is (3, -4).
The image is (-5, 3)
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
The answer will depend on whether the rotation is clockwise or counterclockwise.
The answer will depend on whether the rotation is clockwise or counterclockwise.
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
The answer depends on the centre of rotation. A rotation cannot be described without specifying the centre of rotation.
To find the image of the point (1, -6) after a 270-degree counterclockwise rotation about the origin, we can use the rotation formula. A 270-degree counterclockwise rotation is equivalent to a 90-degree clockwise rotation. The coordinates transform as follows: (x, y) becomes (y, -x). Therefore, the image of (1, -6) is (-6, -1).
The rule for a rotation by 180° about the origin is (x,y)→(−x,−y) .
It is (-1, 6).
(-1, -4) rotated 90 degrees anticlockwise