To find the image of points A, B, and C after a dilation centered at the origin with a scale factor of 2, you multiply each coordinate by 2. The new coordinates are A'(12, 14), B'(8, 4), and C'(0, 14). Thus, the images of the points after dilation are A'(12, 14), B'(8, 4), and C'(0, 14).
To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.
If the original point was (-4, 12) then the image is (-16, 48).
0
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
0.5
To find the image of points A, B, and C after a dilation centered at the origin with a scale factor of 2, you multiply each coordinate by 2. The new coordinates are A'(12, 14), B'(8, 4), and C'(0, 14). Thus, the images of the points after dilation are A'(12, 14), B'(8, 4), and C'(0, 14).
To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.
If the original point was (-4, 12) then the image is (-16, 48).
It is (27, 9).
0
To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.
To dilate the point ( c(93) ) by a scale factor of 3 using the origin as the center of dilation, you multiply the coordinates of the point by 3. If ( c(93) ) refers to the point ( (9, 3) ), the transformed coordinates would be ( (9 \times 3, 3 \times 3) = (27, 9) ). Therefore, the transformed point after the dilation is ( c(27, 9) ).
Translation and dilation.
it is nothing
To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).
Yes.