There is no pattern
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
The given sequence is 12, 20, 28, 36, 44. To find the nth term, observe that the difference between consecutive terms is consistently 8. Therefore, we can express the nth term as ( a_n = 12 + 8(n - 1) ), which simplifies to ( a_n = 8n + 4 ). Thus, the nth term of the sequence is ( a_n = 8n + 4 ).
The sequence 0, 3, 6, 9, 12 is an arithmetic sequence where the first term is 0 and the common difference is 3. The formula for the nth term can be expressed as ( a_n = 3(n - 1) ) or simply ( a_n = 3n - 3 ). This formula generates the nth term by multiplying the term's position (n) by 3 and adjusting for the starting point of the sequence.
Clearly, if you omit the sign, the nth. term will be 4n. The alternating sign can easily be expressed as a power of (-1), so in summary, the nth. term is (-1)n4n.
tn=5n-3
12 - 5(n-1)
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
The nth term of the sequence is expressed by the formula 8n - 4.
The nth term is 5n-3 and so the next term will be 22
nth term is n squared plus three
Well, honey, looks like we've got ourselves an arithmetic sequence here with a common difference of 7. So, to find the nth term, we use the formula a_n = a_1 + (n-1)d. Plug in the values a_1 = 12, d = 7, and n to get the nth term. Math doesn't have to be a drag, darling!
t(n) = 12*n + 5
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
5
The sequence 0, 3, 6, 9, 12 is an arithmetic sequence where the first term is 0 and the common difference is 3. The formula for the nth term can be expressed as ( a_n = 3(n - 1) ) or simply ( a_n = 3n - 3 ). This formula generates the nth term by multiplying the term's position (n) by 3 and adjusting for the starting point of the sequence.
Give the simple formula for the nth term of the following arithmetic sequence. Your answer will be of the form an + b.12, 16, 20, 24, 28, ...
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.