t(n) = n(n - 3)
To find the nth term of the sequence 4, 10, 18, 28, 40, we first identify the pattern in the differences between consecutive terms: 6, 8, 10, and 12. The second differences are constant at 2, indicating a quadratic sequence. The nth term can be expressed as ( a_n = n^2 + n + 2 ). Thus, the nth term of the sequence is ( n^2 + n + 2 ).
n - 1
The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).
It is: -6n+22
By varying the parameters of a quartic polynomial, the nth term can be made whatever you like. But, taking the simplest solution, Un = 2 - 4n for
It is: nth term = -4n+14
The nth term is (2n - 12).
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.
n - 1
The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).
If the nth term is 8 -2n then the 1st four terms are 6, 4, 2, 0 and -32 is the 20th term number
3n-2
It is: -6n+22
Ok, take the formula dn+(a-d) this is just when having a sequence with a common difference dn+(a-d) when d=common difference, a=the 1st term, n=the nth term - you have the sequence 2, 4, 6, 8... and you want to find the nth term therefore: dn+(a-d) 2n+(2-2) 2n Let's assume you want to find the 5th term (in this case, the following number in the sequence) 2(5) = 10 (so the fifth term is 10)
By varying the parameters of a quartic polynomial, the nth term can be made whatever you like. But, taking the simplest solution, Un = 2 - 4n for