To find the nth term of the sequence 4, 10, 18, 28, 40, we first identify the pattern in the differences between consecutive terms: 6, 8, 10, and 12. The second differences are constant at 2, indicating a quadratic sequence. The nth term can be expressed as ( a_n = n^2 + n + 2 ). Thus, the nth term of the sequence is ( n^2 + n + 2 ).
xn = xn-1 - (n + 2).
3n(n+1] + 5 is the nth term
The sequence 3, 8, 13, 18, 23, 28 increases by 5 each time. This indicates a linear pattern. The nth term can be expressed as ( a_n = 3 + 5(n - 1) ), which simplifies to ( a_n = 5n - 2 ). Thus, the nth term of the sequence is ( 5n - 2 ).
To find the nth term of the sequence 4, 13, 28, 49, 76, we first identify the differences between consecutive terms: 9, 15, 21, 27. The second differences, which are constant at 6 (6, 6, 6), suggest that the sequence is quadratic. The nth term can be expressed as ( an^2 + bn + c ). By solving the equations based on the first few terms, we find the nth term is ( n^2 + 3n ).
To find the nth term of the sequence 4, 10, 18, 28, 40, we first identify the pattern in the differences between consecutive terms: 6, 8, 10, and 12. The second differences are constant at 2, indicating a quadratic sequence. The nth term can be expressed as ( a_n = n^2 + n + 2 ). Thus, the nth term of the sequence is ( n^2 + n + 2 ).
xn = xn-1 - (n + 2).
3n(n+1] + 5 is the nth term
The sequence 3, 8, 13, 18, 23, 28 increases by 5 each time. This indicates a linear pattern. The nth term can be expressed as ( a_n = 3 + 5(n - 1) ), which simplifies to ( a_n = 5n - 2 ). Thus, the nth term of the sequence is ( 5n - 2 ).
It is: nth term = -4n+14
t(n) = n2 + 5n - 1
To find the nth term of the sequence 4, 13, 28, 49, 76, we first identify the differences between consecutive terms: 9, 15, 21, 27. The second differences, which are constant at 6 (6, 6, 6), suggest that the sequence is quadratic. The nth term can be expressed as ( an^2 + bn + c ). By solving the equations based on the first few terms, we find the nth term is ( n^2 + 3n ).
The nth term is (2n - 12).
It is: nth term = 7n-9
The Nth term in the series is [ 2N ] .
The nth term of the sequence is (n + 1)2 + 2.
To find the nth term of the sequence 4, 7, 12, 19, 28, we first look at the differences between consecutive terms: 3, 5, 7, 9, which suggests a pattern of increasing odd numbers. The second differences are constant, indicating a quadratic function. The nth term can be expressed as ( T(n) = n^2 + n + 2 ). Thus, for any term n, you can calculate its value using this formula.