Multiply together the probability that each event would have of occurring by itself. For example, the probability of rolling a "3" on a single die is 1/6 ,because there are 6 different possibilities. And the probability of flipping a "heads" on a coin is 1/2 , because there are two possibilities. Then the probability of rolling a "3" AND flipping a "heads" is ; 1/6 x 1/2 = 1/12 .
It sounds like Bayesian statistics.
yss
No, the combined probability is the product of the probability of their separate occurrances.
Yes, it is possible for two dependent events to have the same probability of occurring. The probability of an event is dependent on the outcomes of other events, and it is influenced by the relationship between these events. So, it is conceivable for two dependent events to have equal probabilities.
The four basic rules of probability are: Non-negativity: The probability of any event is always between 0 and 1, inclusive. Normalization: The total probability of all possible outcomes in a sample space sums to 1. Additive Rule: For mutually exclusive events, the probability of either event occurring is the sum of their individual probabilities. Multiplicative Rule: For independent events, the probability of both events occurring is the product of their individual probabilities.
It sounds like Bayesian statistics.
yss
No, the combined probability is the product of the probability of their separate occurrances.
Independent events with a probability of zero
The probability of two independent events occurring together is the product of both events. yw lazy odyssey users like me :)
Yes, it is possible for two dependent events to have the same probability of occurring. The probability of an event is dependent on the outcomes of other events, and it is influenced by the relationship between these events. So, it is conceivable for two dependent events to have equal probabilities.
Two independent events occurring.
These events are complementary. Let P(A) = probability event will occur. Then the probability it will not occur is: 1 - P(A).
The four basic rules of probability are: Non-negativity: The probability of any event is always between 0 and 1, inclusive. Normalization: The total probability of all possible outcomes in a sample space sums to 1. Additive Rule: For mutually exclusive events, the probability of either event occurring is the sum of their individual probabilities. Multiplicative Rule: For independent events, the probability of both events occurring is the product of their individual probabilities.
It is true.
If the probability of A is p1 and probability of B is p2 where A and B are independent events or outcomes, then the probability of both A and B occurring is p1 x p2. See related link for examples.
Yes, when two probabilities are multiplied, it typically indicates a compound event, specifically in the context of independent events. This multiplication reflects the likelihood of both events occurring together. For instance, if you have two independent events A and B, the probability of both occurring is calculated by multiplying their individual probabilities: P(A and B) = P(A) × P(B). However, if the events are not independent, you would need to consider their relationship to determine the combined probability correctly.