associative?
single replacement
We can use the identity ((a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc)). Given that (a + b + c = 12) and (a^2 + b^2 + c^2 = 64), we can substitute these values into the identity: [ 12^2 = 64 + 2(ab + ac + bc). ] Calculating (12^2) gives us 144, so: [ 144 = 64 + 2(ab + ac + bc). ] Subtracting 64 from both sides gives us: [ 80 = 2(ab + ac + bc). ] Dividing by 2, we find: [ ab + ac + bc = 40. ] Thus, the value of (ab + ac + bc) is 40.
AB plus BC equals AC is an example of the Segment Addition Postulate in geometry. This postulate states that if point B lies on line segment AC, then the sum of the lengths of segments AB and BC is equal to the length of segment AC. It illustrates the relationship between points and segments on a line.
Do you mean F = abc + abc + ac + bc + abc' ? *x+x = x F = abc + ac + bc + abc' *Rearranging F = abc + abc' + ab + bc *Factoring out ab F = ab(c+c') + ab + bc *x+x' = 1 F = ab + ab + bc *x+x = x F = bc
It would be a straight line of length bc
hello
associative? single replacement
A+BC+AC+B=A+BC+AC+B unless any of these variables has an assigned value.
yes because ab plus bc is ac
This is a 'Sngle Displacement' reaction ( A + BC --> AC + B
It is possible, depending on what on earth AC and BC are!
A+bc---> b+ac
A+bc---> b+ac
(a + b)(b + c)
never A+ :))
We can use the identity ((a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc)). Given that (a + b + c = 12) and (a^2 + b^2 + c^2 = 64), we can substitute these values into the identity: [ 12^2 = 64 + 2(ab + ac + bc). ] Calculating (12^2) gives us 144, so: [ 144 = 64 + 2(ab + ac + bc). ] Subtracting 64 from both sides gives us: [ 80 = 2(ab + ac + bc). ] Dividing by 2, we find: [ ab + ac + bc = 40. ] Thus, the value of (ab + ac + bc) is 40.
AB plus BC equals AC is an example of the Segment Addition Postulate in geometry. This postulate states that if point B lies on line segment AC, then the sum of the lengths of segments AB and BC is equal to the length of segment AC. It illustrates the relationship between points and segments on a line.
Do you mean F = abc + abc + ac + bc + abc' ? *x+x = x F = abc + ac + bc + abc' *Rearranging F = abc + abc' + ab + bc *Factoring out ab F = ab(c+c') + ab + bc *x+x' = 1 F = ab + ab + bc *x+x = x F = bc