Want this question answered?
II, III, and IV (stufy island)
For addition, 0 and for multiplication, 1.
The answer depends on the context. There are opposite numbers that can be the additive inverses, or multiplicative inverses.
Please don't write "the following" if you don't provide a list. This is the situation for some common number sets:* Whole numbers / integers do NOT have this property. * Rational numbers DO have this property. * Real numbers DO have this property. * Complex numbers DO have this property. * The set of non-negative rational numbers, as well as the set of non-negative real numbers, DO have this property.
Integers
Rational numbers and Real Numbers. The multiplicative inverses of integers are not integers.
II, III, and IV (stufy island)
For addition, 0 and for multiplication, 1.
The answer depends on the context. There are opposite numbers that can be the additive inverses, or multiplicative inverses.
All rational numbers, with the exception of zero (0), have a multiplicative inverse. In fact, all real numbers (again, except for zero) have multiplicative inverses, though the inverses of irrational numbers are themselves irrational. Even imaginary numbers have multiplicative inverses (the multiplicative inverse of 5i is -0.2i - as you can see the inverse itself is also imaginary). Even complex numbers (the sum of an imaginary number and a real number) have multiplicative inverses (the inverse of [5i + 2] is [-5i/29 + 2/29] - similar to irrational and imaginary numbers, the inverse of a complex number is itself complex). The onlynumber, in any set of numbers, that does not have a multiplicative inverse is zero.
Please don't write "the following" if you don't provide a list. This is the situation for some common number sets:* Whole numbers / integers do NOT have this property. * Rational numbers DO have this property. * Real numbers DO have this property. * Complex numbers DO have this property. * The set of non-negative rational numbers, as well as the set of non-negative real numbers, DO have this property.
Integers
The identity property for a set with the operation of multiplication defined on it is that the set contains a unique element, denoted by i, such that for every element x in the set, i * x = x = x * i The set need not consist of numbers, and the multiplication need not be the everyday kind of multiplication. Matrix multiplication is an example.
Additive inverses
additive inverses
additive inverses
Operations that undo each other are called inverse operations. Division is the inverse of multiplication as it undoes the multiplication. eg 3 × 7 = 21; 21 ÷ 7 = 3. Note that there is NO inverse for multiplying by 0.