If the discriminant of a quadratic equation is less than zero then it will have no real roots
Chat with our AI personalities
Because the square root of the discriminant is a component of the roots of the equation.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
The real roots of what, exactly? If you mean a square trinomial, then: If the discriminant is positive, the polynomial has two real roots. If the discriminant is zero, the polynomial has one (double) real root. If the discriminant is negative, the polynomial has two complex roots (and of course no real roots). The discriminant is the term under the square root in the quadratic equation, in other words, b2 - 4ac.
Put the equation into ax²+bx+c=0 form. The discriminant is b²-4ac. If it is negative, there are no real roots. If it is 0, there is one real root. If it is positive, there are 2 real roots. ■
quadratics have the form ax2+bx+c=0 the discriminant is the square root of (b2-4ac) = square root of (16-16) =square root of 0 = 0