sec2(x) - tan2(x)= 1/cos2(x) - sin2(x)/cos2(x)= (1 - sin2(x)) / cos2(x)= cos2(x) / cos2(x)= 1
Using x instead of theta, cos2x/cosec2x + cos4x = cos2x*sin2x + cos4x = cos2x*(sin2x + cos2x) = cos2x*1 = cos2x
Yes
Let s = sin x; c = cos x. By definition, sec x = 1/cos x = 1/c; and tan x = (sin x) / (cos x) = s/c. We know, also, that s2 + c2 = 1. Then, dividing through by c2, we have, (s2/c2) + 1 = (1/c2), or (s/c)2 + 1 = (1/c)2; in other words, we have, tan2 x + 1 = sec2 x.
sin(pi) = 0 so 4*sin(pi) = 0 so Y = 0
cos2 + cos2tan2 = cos2 + cos2*sin2/cos2 = cos2 + sin2 which is identically equal to 1. So the solution is all angles.
sec2(x) - tan2(x)= 1/cos2(x) - sin2(x)/cos2(x)= (1 - sin2(x)) / cos2(x)= cos2(x) / cos2(x)= 1
Use these identities: sin2(x) + cos2(x) = 1, and tan(x) = sin(x)/cos(x) For clarity, the functions are written here without their arguments (the "of x" part). (1 - sin2) = cos2 (1 + tan2) = (1 + sin2/cos2) = (cos2+sin2) / cos2 = 1/cos2 Multiply them: (cos2) times (1/cos2) = 1'QED'
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
No.Remember: sin2 + cos2 = 1So, in place of (1 - 2 sin2) we can write (sin2 + cos2 - 2 sin2).Massage that around slightly: (sin2 + cos2 - 2 sin2) = cos2 - sin2That's not equal to (sin2 - cos2), which is the original question we were asked.
I think it is 3.14 that equals to pi when u solve it
Circumference equals Diameter times Pi, OR Diameter equals (Circumference)/(Pi). In this case, Diameter equals (130mm)/(Pi or 3.14159) equals 41.38mm
-cos2(x)1 = sin2(x) +cos2(x)1 - cos2(x) = sin2(x)-cos2(x) = sin2(x) - 1
A pi equals 3.1415326535897932384626433832795028841971693993751058209749445923
3
Using x instead of theta, cos2x/cosec2x + cos4x = cos2x*sin2x + cos4x = cos2x*(sin2x + cos2x) = cos2x*1 = cos2x
Theta equals 0 or pi.